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Review: Perceptron
o Perceptrons were developed in the 1950s and 1960s 

loosely inspired by the neuron. 



Neural Networks

o The building block of a neural network is a single computational unit. 
A unit takes a set of real valued numbers as input, performs some 
computation.



Neural Networks: A brain-inspired 
metaphor



A single neuron



Neural networks



Perceptron -> Logistic Regression

o Like the Perceptron, logistic regression uses a vector of weights and 
a bias term. 

o 𝑧𝑧 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏
o This can also be written as a dot product:
o 𝑧𝑧 = 𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏
o Instead of outputting z directly, logistic regression transforms it with 

the sigmoid function σ(z).



Perceptron



Sigmoid neurons

o Problem: a small change in the weights or bias of any single 
perceptron in the network can causes the output to completely flip 
from 0 to 1.

o Solution: sigmoid neuron

Same weights and 
bias as perceptron

Inputs: any real-
valued number

Output is no longer 
just 1 or 0.

output =

Sigmoid function:

Perceptron

Sigmoid neuron



Sigmoid neuron



Smoothness is crucial

o Smoothness of σ means that small changes in the weights wj and in 
the bias b will produce a small change the output from the neuron

o Δoutput is a linear function of the changes Δwj and Δb
o This makes it easy to choose small changes in the weights and biases 

to achieve any desired small change in the output



Activation Functions

o Instead of directly outputting z = w·x+b, which is a linear function of x, neuron units apply a non-linear 
function f to z.

o The output of this function is called the activation value for the unit, represented by the variable a.  
The output of a neural network is called y, so if  the activation of a node is the final output of a network
then

o y=a= f(z) 

o There are 3 commonly used non-linear functions used for f:
The sigmoid function
The tanh function
The rectified linear unit ReLU

The sigmoid function



Activation Functions

The sigmoid function tanh

ReLU



Feed-Forward Neural Network

o The simplest kind of NN is the Feed-Forward Neural Network

o Multilayer network, all units are usually fully-connected, and no cycles.

o The outputs from each layer are passed to units in the next higher layer, and no outputs are passed 
back to lower layers. 

Layer 0 (input layer) 

Layer 1 (hidden layer) 

Layer 2 (output layer) 



Equations for a feedforward network 

o A single hidden unit has parameters w (the weight vector) and b (the bias scalar). 
o We represent the parameters for the entire hidden layer by combining the weight vector wi

and bias bi for each unit i into a single weight matrix W and a single bias vector b for the 
whole layer.



Equations for a feedforward network 

o The advantage of using a single matrix W for the weights of the entire 
layer is the hidden layer computation can be done efficiently with 
simple matrix operations. 

o The computation has three steps: 
o 1. multiplying the weight matrix by the input vector x, 

2. adding the bias vector b, and 
3. applying the activation function g (such as Sigmoid)

o The output of the hidden layer, the vector h, is thus the following, 
using the sigmoid function σ: 

h = σ(Wx+b) 



Equations for a feedforward network 
o Like the hidden layer, the output layer has a weight  matrix U.

Its weight matrix is multiplied by its input vector (h) to produce the 
intermediate output z. 

o z=Uh 



Equations for a feedforward network 

o Here are the final equations for a feedforward network with a single 
hidden layer, which takes an input vector x, outputs a probability 
distribution y, and is parameterized by weight matrices W and U and 
a bias vector b: 

o h = σ(Wx+b)
z = Uh
y = softmax(z) 

o Like with logistic regression, softmax normalizes the output and 
turns it into a probability distribution. 
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Review: Feed-Forward Neural Network
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Training Neural Nets

o Like logistic regression, we want to learn the best parameters for the 
neural net to make its predictions �𝑦𝑦 as close to possible as the gold 
standard labels in our training data y.

o What do we need?
o A loss function – cross-entropy loss
o An optimization algorithm – gradient descent
o A way of computing the gradient of the loss function – error 

propagation 



Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final 
layer, the loss function is exactly the same as we saw in logistic 
regression:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]



Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final layer, the loss function is 
exactly the same as we saw in logistic regression:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]

o For multinomial classification
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − ∑𝑖𝑖=1𝐶𝐶 𝑦𝑦𝑖𝑖 log �𝑦𝑦𝑖𝑖

o If there is only one correct answer, where the truth is yi=1, then this simplifies to be
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log �𝑦𝑦𝑖𝑖

o Plugging into softmax: 

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑒𝑒𝑧𝑧𝑖𝑖
∑𝑗𝑗=1
𝐾𝐾 𝑒𝑒𝑧𝑧𝑗𝑗



Computing the gradient

o Logistic regression can be thought of as a network with just one 
weight layer and a sigmoid output.  In that case the gradient is: 

o
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑤𝑤,𝑏𝑏)

𝜕𝜕𝜕𝜕𝜕𝜕
= �𝑦𝑦 − 𝑦𝑦 𝑥𝑥𝑥𝑥

o = 𝜎𝜎 𝑤𝑤 � 𝑥𝑥 + 𝑏𝑏 − 𝑦𝑦 𝑥𝑥𝑗𝑗

o But these derivatives only give correct updates for the last weight 
layer! For deeper networks, computing the gradients requires looking 
back through all the earlier layers in the network, even though the 
loss is only computed with respect to the output of the network. 

Solution: error backpropagation algorithm



Computation Graphs

o Although backpropagation was invented for neural nets, it is related 
to general procedure called backward differentiation, which 
depends on the notion of computation graphs. 

o A computation graph represents the process of computing a 
mathematical expression.  The computation is broken down into 
separate operations.  Each operation is a node in a graph. 

L(a, b, c) = c(a + 2b) d = 2∗b 
e = a+d
L = c∗e



Forward pass

L(a, b, c) = c(a + 2b) d = 2∗b 
e = a+d
L = c∗e

inputs a = 3, b = 1, c = −2, 



Backward differentiation

o The importance of the computation graph comes from the backward 
pass, which is used to compute the derivatives that we’ll need for the 
weight update. 

o How do we compute the derivative of our output function L with 
respect to the input variables a, b, and c?

o Backwards differentiation uses the chain rule from calculus.  
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Chain rule

o For a composite function f(x) = u(v(x)), the derivative of f(x) is:

o Similarly for, f(x) = u(v(w(x))), the derivative of f(x) is: 
o
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑒𝑒
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Backward pass



Computation Graph for a NN

𝑧𝑧[1] = 𝑊𝑊[1] 𝐱𝐱 + 𝑏𝑏[1]

𝑎𝑎[1] = ReLU 𝑧𝑧 1

𝑧𝑧[2] = 𝑊𝑊[2]𝑎𝑎[1] + 𝑏𝑏[2]

𝑎𝑎[2] = 𝜎𝜎 𝑧𝑧 2

�𝑦𝑦 = 𝑎𝑎[2]


	Neural Networks
	Review: Perceptron
	Neural Networks
	Neural Networks: A brain-inspired metaphor
	A single neuron
	Neural networks
	Perceptron -> Logistic Regression
	Perceptron
	Sigmoid neurons
	Sigmoid neuron
	Smoothness is crucial
	Activation Functions
	Activation Functions
	Feed-Forward Neural Network
	Equations for a feedforward network 
	Equations for a feedforward network 
	Equations for a feedforward network 
	Equations for a feedforward network 
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Training Neural Nets
	Cross-Entropy Loss
	Cross-Entropy Loss
	Computing the gradient
	Computation Graphs
	Forward pass
	Backward differentiation
	Chain rule
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Backward pass
	Computation Graph for a NN

