
CIS 421/521:
ARTIFICIAL INTELLIGENCE
CIS 421/521:
ARTIFICIAL INTELLIGENCE

Neural
Networks

Jurafsky and Martin Chapter 7

Review: Perceptron
o Perceptrons were developed in the 1950s and 1960s

loosely inspired by the neuron.

Neural Networks

o The building block of a neural network is a single computational unit.
A unit takes a set of real valued numbers as input, performs some
computation.

Neural Networks: A brain-inspired
metaphor

A single neuron

Neural networks

Perceptron -> Logistic Regression

o Like the Perceptron, logistic regression uses a vector of weights and
a bias term.

o 𝑧𝑧 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏
o This can also be written as a dot product:
o 𝑧𝑧 = 𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏
o Instead of outputting z directly, logistic regression transforms it with

the sigmoid function σ(z).

Perceptron

Sigmoid neurons

o Problem: a small change in the weights or bias of any single
perceptron in the network can causes the output to completely flip
from 0 to 1.

o Solution: sigmoid neuron

Same weights and
bias as perceptron

Inputs: any real-
valued number

Output is no longer
just 1 or 0.

output =

Sigmoid function:

Perceptron

Sigmoid neuron

Sigmoid neuron

Smoothness is crucial

o Smoothness of σ means that small changes in the weights wj and in
the bias b will produce a small change the output from the neuron

o Δoutput is a linear function of the changes Δwj and Δb
o This makes it easy to choose small changes in the weights and biases

to achieve any desired small change in the output

Activation Functions

o Instead of directly outputting z = w·x+b, which is a linear function of x, neuron units apply a non-linear
function f to z.

o The output of this function is called the activation value for the unit, represented by the variable a.
The output of a neural network is called y, so if the activation of a node is the final output of a network
then

o y=a= f(z)

o There are 3 commonly used non-linear functions used for f:
The sigmoid function
The tanh function
The rectified linear unit ReLU

The sigmoid function

Activation Functions

The sigmoid function tanh

ReLU

Feed-Forward Neural Network

o The simplest kind of NN is the Feed-Forward Neural Network

o Multilayer network, all units are usually fully-connected, and no cycles.

o The outputs from each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers.

Layer 0 (input layer)

Layer 1 (hidden layer)

Layer 2 (output layer)

Equations for a feedforward network

o A single hidden unit has parameters w (the weight vector) and b (the bias scalar).
o We represent the parameters for the entire hidden layer by combining the weight vector wi

and bias bi for each unit i into a single weight matrix W and a single bias vector b for the
whole layer.

Equations for a feedforward network

o The advantage of using a single matrix W for the weights of the entire
layer is the hidden layer computation can be done efficiently with
simple matrix operations.

o The computation has three steps:
o 1. multiplying the weight matrix by the input vector x,

2. adding the bias vector b, and
3. applying the activation function g (such as Sigmoid)

o The output of the hidden layer, the vector h, is thus the following,
using the sigmoid function σ:

h = σ(Wx+b)

Equations for a feedforward network
o Like the hidden layer, the output layer has a weight matrix U.

Its weight matrix is multiplied by its input vector (h) to produce the
intermediate output z.

o z=Uh

Equations for a feedforward network

o Here are the final equations for a feedforward network with a single
hidden layer, which takes an input vector x, outputs a probability
distribution y, and is parameterized by weight matrices W and U and
a bias vector b:

o h = σ(Wx+b)
z = Uh
y = softmax(z)

o Like with logistic regression, softmax normalizes the output and
turns it into a probability distribution.

Review: Feed-Forward Neural Network

o The simplest kind of is the Feed-Forward Neural Network

o Multilayer network, all units are usually fully-connected, and no cycles.

o The outputs from each layer are passed to units in the next higher layer, and no outputs are passed
back to lower layers.

Layer 0 (input layer)

Layer 1 (hidden layer)

Layer 2 (output layer)

Review: Feed-Forward Neural Network

o A single hidden unit has parameters w (the weight
vector) and b (the bias scalar).

o We represent the parameters for the entire hidden
layer by combining the weight vector wi and bias bifor each unit i into a single weight matrix W and a
single bias vector b for the whole layer.

Review: Feed-Forward Neural Network

o The advantage of using a single matrix W for the weights of the entire
layer is the hidden layer computation can be done efficiently with
simple matrix operations.

o The computation has three steps:
o 1. multiplying the weight matrix by the input vector x,

2. adding the bias vector b, and
3. applying the activation function g (such as Sigmoid)

o The output of the hidden layer, the vector h, is thus the following,
using the sigmoid function σ:

o h = σ(Wx+b)

Review: Feed-Forward Neural Network

o Like the hidden layer, the output layer has a weight
matrix U.
Its weight matrix is multiplied by its input vector (h)
to produce the intermediate output z.

o z=Uh

Review: Feed-Forward Neural Network

o Here are the final equations for a feedforward network with a single
hidden layer, which takes an input vector x, outputs a probability
distribution y, and is parameterized by weight matrices W and U and
a bias vector b:

o h = σ(Wx+b)
z = Uh
y = softmax(z)

o Like with logistic regression, softmax normalizes the output and
turns it into a probability distribution.

Training Neural Nets

o Like logistic regression, we want to learn the best parameters for the
neural net to make its predictions �𝑦𝑦 as close to possible as the gold
standard labels in our training data y.

o What do we need?
o A loss function – cross-entropy loss
o An optimization algorithm – gradient descent
o A way of computing the gradient of the loss function – error

propagation

Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final
layer, the loss function is exactly the same as we saw in logistic
regression:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]

Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final layer, the loss function is
exactly the same as we saw in logistic regression:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]

o For multinomial classification
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − ∑𝑖𝑖=1𝐶𝐶 𝑦𝑦𝑖𝑖 log �𝑦𝑦𝑖𝑖

o If there is only one correct answer, where the truth is yi=1, then this simplifies to be
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log �𝑦𝑦𝑖𝑖

o Plugging into softmax:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑒𝑒𝑧𝑧𝑖𝑖
∑𝑗𝑗=1
𝐾𝐾 𝑒𝑒𝑧𝑧𝑗𝑗

Computing the gradient

o Logistic regression can be thought of as a network with just one
weight layer and a sigmoid output. In that case the gradient is:

o
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝑤𝑤,𝑏𝑏)

𝜕𝜕𝜕𝜕𝜕𝜕
= �𝑦𝑦 − 𝑦𝑦 𝑥𝑥𝑥𝑥

o = 𝜎𝜎 𝑤𝑤 � 𝑥𝑥 + 𝑏𝑏 − 𝑦𝑦 𝑥𝑥𝑗𝑗

o But these derivatives only give correct updates for the last weight
layer! For deeper networks, computing the gradients requires looking
back through all the earlier layers in the network, even though the
loss is only computed with respect to the output of the network.

Solution: error backpropagation algorithm

Computation Graphs

o Although backpropagation was invented for neural nets, it is related
to general procedure called backward differentiation, which
depends on the notion of computation graphs.

o A computation graph represents the process of computing a
mathematical expression. The computation is broken down into
separate operations. Each operation is a node in a graph.

L(a, b, c) = c(a + 2b) d = 2∗b
e = a+d
L = c∗e

Forward pass

L(a, b, c) = c(a + 2b) d = 2∗b
e = a+d
L = c∗e

inputs a = 3, b = 1, c = −2,

Backward differentiation

o The importance of the computation graph comes from the backward
pass, which is used to compute the derivatives that we’ll need for the
weight update.

o How do we compute the derivative of our output function L with
respect to the input variables a, b, and c?

o Backwards differentiation uses the chain rule from calculus.

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Chain rule

o For a composite function f(x) = u(v(x)), the derivative of f(x) is:

o Similarly for, f(x) = u(v(w(x))), the derivative of f(x) is:
o

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑒𝑒

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑒𝑒

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑒𝑒

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 1,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑐𝑐,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑒𝑒

Backward pass

Computation Graph for a NN

𝑧𝑧[1] = 𝑊𝑊[1] 𝐱𝐱 + 𝑏𝑏[1]

𝑎𝑎[1] = ReLU 𝑧𝑧 1

𝑧𝑧[2] = 𝑊𝑊[2]𝑎𝑎[1] + 𝑏𝑏[2]

𝑎𝑎[2] = 𝜎𝜎 𝑧𝑧 2

�𝑦𝑦 = 𝑎𝑎[2]

	Neural Networks
	Review: Perceptron
	Neural Networks
	Neural Networks: A brain-inspired metaphor
	A single neuron
	Neural networks
	Perceptron -> Logistic Regression
	Perceptron
	Sigmoid neurons
	Sigmoid neuron
	Smoothness is crucial
	Activation Functions
	Activation Functions
	Feed-Forward Neural Network
	Equations for a feedforward network
	Equations for a feedforward network
	Equations for a feedforward network
	Equations for a feedforward network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Training Neural Nets
	Cross-Entropy Loss
	Cross-Entropy Loss
	Computing the gradient
	Computation Graphs
	Forward pass
	Backward differentiation
	Chain rule
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Backward pass
	Computation Graph for a NN

