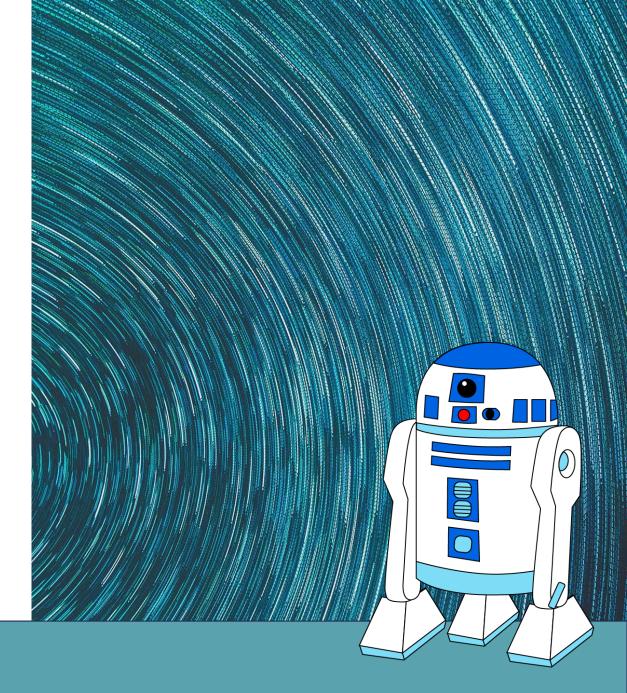
CIS 421/521: ARTIFICIAL INTELLIGENCE

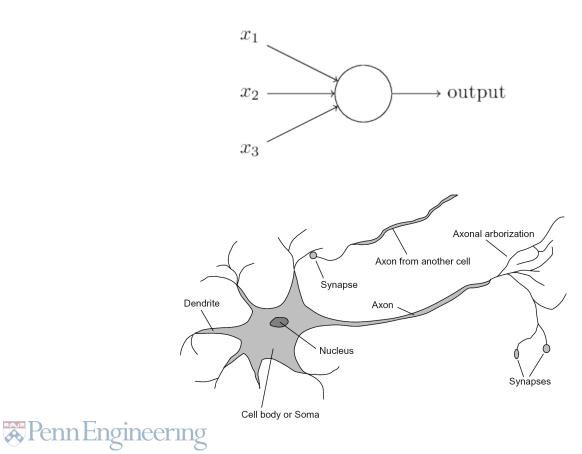
Neural Networks

Jurafsky and Martin Chapter 7



Review: Perceptron

Perceptrons were developed in the 1950s and 1960s
 loosely inspired by the neuron.



Electronic 'Brain' Teaches Itself

The Navy last week demonstrated recognize the difference between the embryo of an electronic computer named the Perceptron which, child learns.

when completed in about a year, is expected to be the first non-living mechanism able to "perceive, recognize and identify its surroundings without human training or control." Navy officers demonstrating a preliminary form of the device in magnetic tape.

Washington said they hesitated to call it a machine because it is so much like a "human being without life." Later Perceptrons, Dr. Rosenblatt said, will be able to recognize people and call out their names. Printed pages, longhand letters and even

Dr. Frank Rosenblatt, research psychologist at the Cornell Aeronautical Laboratory, Inc., Buffalo, N. Y., designer of the Perceptron. conducted the demonstration. The machine, he said, would be the first electronic device to think as the another language.

human brain. Like humans, Perceptron will make mistakes at first, Sclf-Reproduction

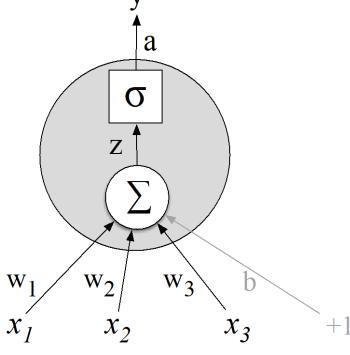
"but it will grow wiser as it gains experience," he said. In principle, Dr. Rosenblatt said, it would be possible to build Per-

The first Perceptron, to cost about ceptrons that could reproduce them-\$100,000, will have about 1,000 electronic "association cells" receiving electrical impulses from an eyelike existence.

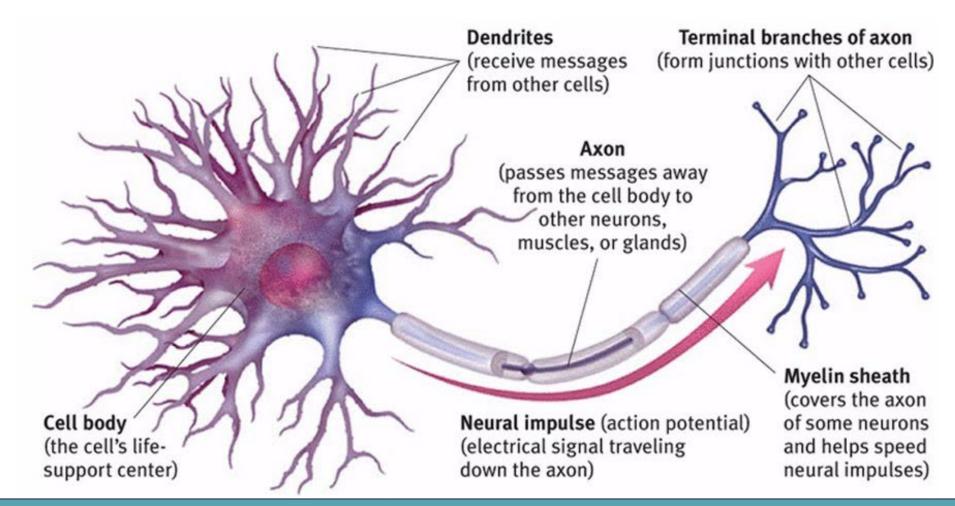
scanning device with 400 photocells. Perceptron, it was pointed out, The human brain has ten billion needs no "priming." It is not nec-

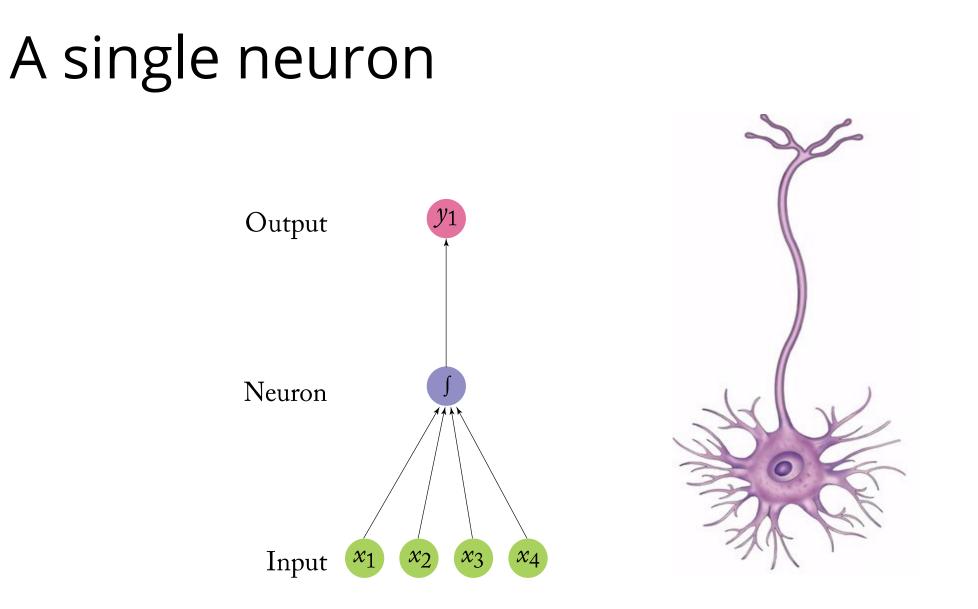
Neural Networks

The building block of a neural network is a single computational unit.
 A unit takes a set of real valued numbers as input, performs some computation.

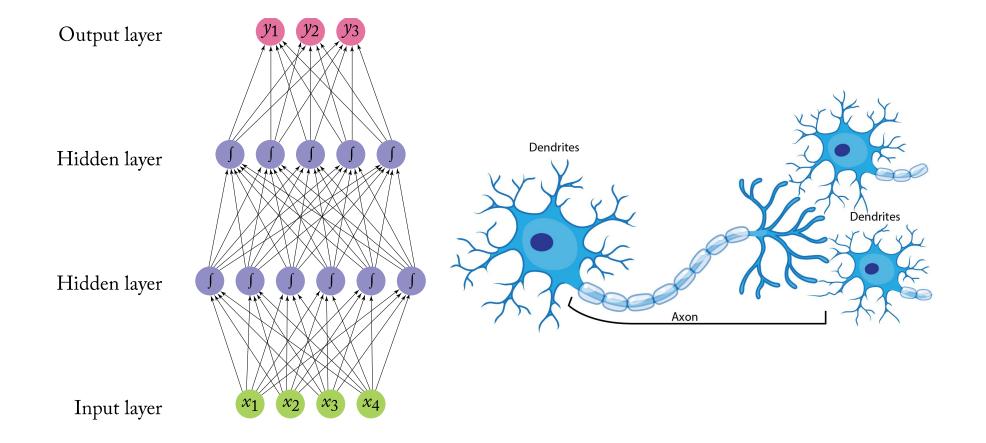


Neural Networks: A brain-inspired metaphor





Neural networks

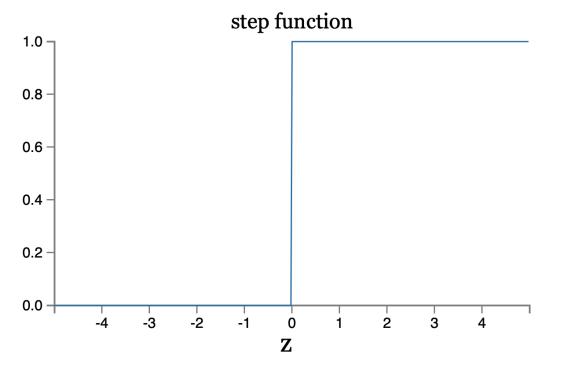


Perceptron -> Logistic Regression

- Like the Perceptron, logistic regression uses a vector of weights and a bias term.
- $\circ \quad z = \sum_i w_i x_i + b$
- $_{\circ}$ This can also be written as a dot product:
- $\circ \quad z = w \cdot x + b$
- $_{\odot}\,$ Instead of outputting z directly, logistic regression transforms it with the sigmoid function $\sigma(z).$

Perceptron

 $z \equiv w \cdot x + b$

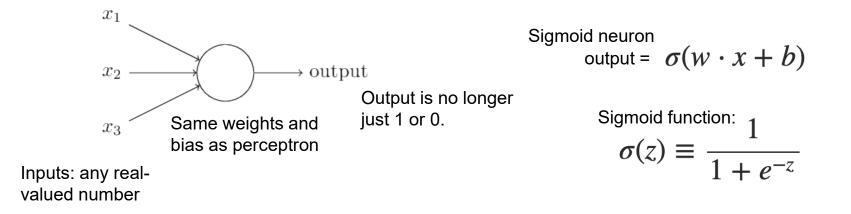


output =
$$\begin{cases} 0 & \text{if } w \cdot x + b \le 0\\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$

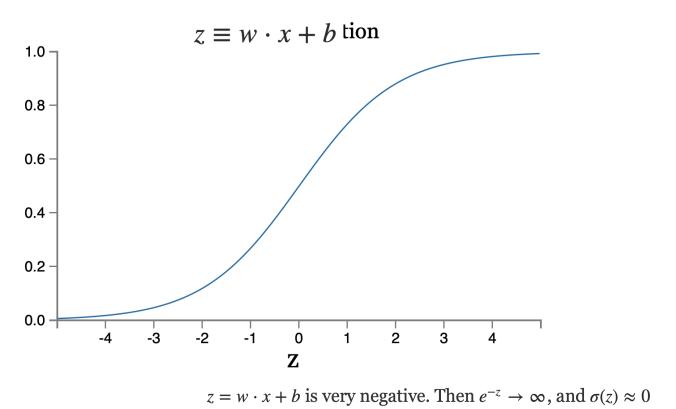
Sigmoid neurons

- Problem: a small change in the weights or bias of any single perceptron in the network can causes the output to completely flip from 0 to 1.
- Solution: sigmoid neuron

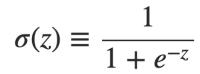
$$\begin{array}{l} \text{Perceptron}\\ \text{output} = \begin{cases} 0 & \text{if } w \cdot x + b \leq 0\\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$



Sigmoid neuron



 $z \equiv w \cdot x + b$ is a large positive number. Then $e^{-z} \approx 0$



😽 Penn Engineering

Smoothness is crucial

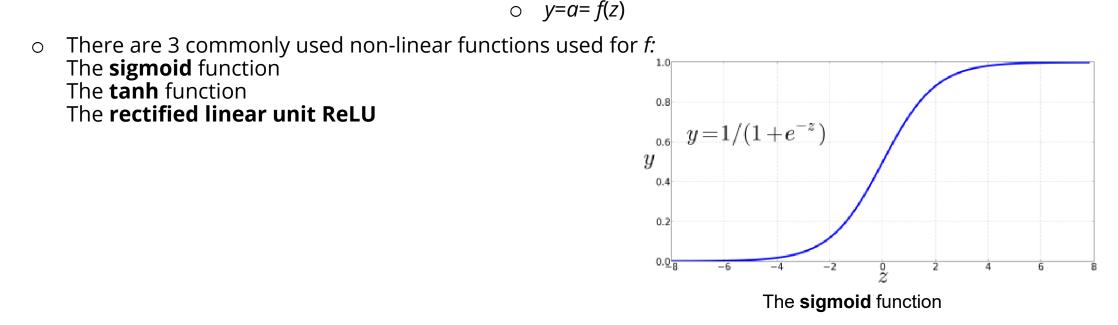
• Smoothness of σ means that small changes in the weights w_j and in the bias *b* will produce a small change the output from the neuron

$$\Delta \text{output} \approx \sum_{j} \frac{\partial \text{ output}}{\partial w_{j}} \Delta w_{j} + \frac{\partial \text{ output}}{\partial b} \Delta b$$

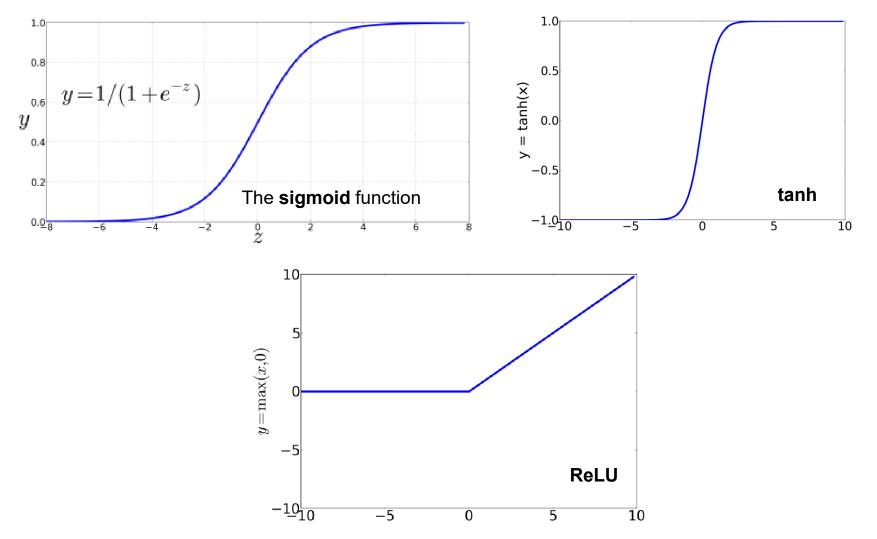
- \circ Δ output is a *linear function* of the changes Δ wj and Δ b
- This makes it easy to choose small changes in the weights and biases to achieve any desired small change in the output

Activation Functions

- Instead of directly outputting $z = w \cdot x + b$, which is a linear function of x, neuron units apply a non-linear function f to z.
- The output of this function is called the **activation value** for the unit, represented by the variable **a**.
 The output of a neural network is called **y**, so if the activation of a node is the final output of a network then

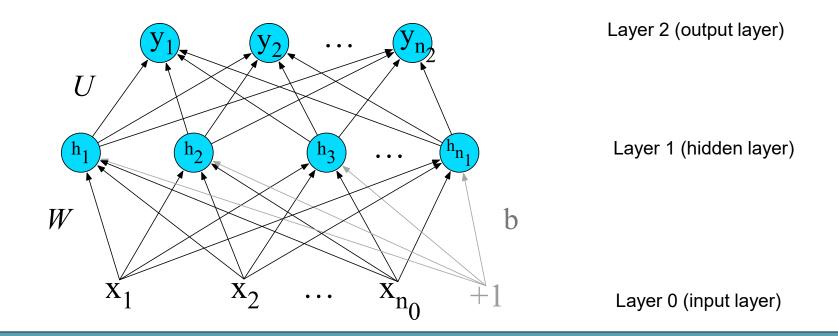


Activation Functions

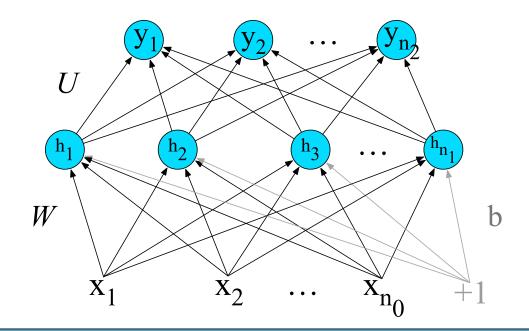


Feed-Forward Neural Network

- The simplest kind of NN is the **Feed-Forward Neural Network**
- Multilayer network, all units are usually fully-connected, and no cycles.
- The outputs from each layer are passed to units in the next higher layer, and no outputs are passed back to lower layers.



- \circ A single hidden unit has parameters *w* (the weight vector) and *b* (the bias scalar).
- We represent the parameters for the entire hidden layer by combining the weight vector w_i and bias b_i for each unit i into a single weight matrix W and a single bias vector b for the whole layer.

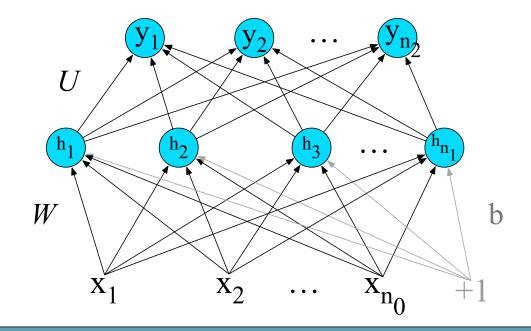


- $_{\odot}$ The advantage of using a single matrix ${\it W}$ for the weights of the entire layer is the hidden layer computation can be done efficiently with simple matrix operations.
- $_{\circ}~$ The computation has three steps:
- 1. multiplying the weight matrix by the input vector x,
 2. adding the bias vector b, and
 3. applying the activation function g (such as Sigmoid)
- $_{\odot}\,$ The output of the hidden layer, the vector *h*, is thus the following, using the sigmoid function σ :

 $h = \sigma(Wx+b)$

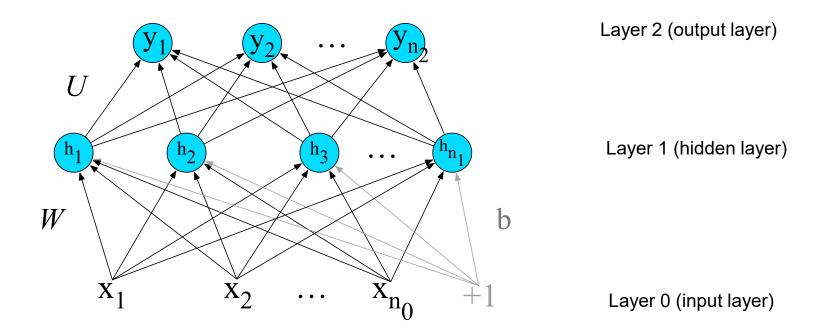
Like the hidden layer, the output layer has a weight matrix *U*.
 Its weight matrix is multiplied by its input vector (*h*) to produce the intermediate output *z*.

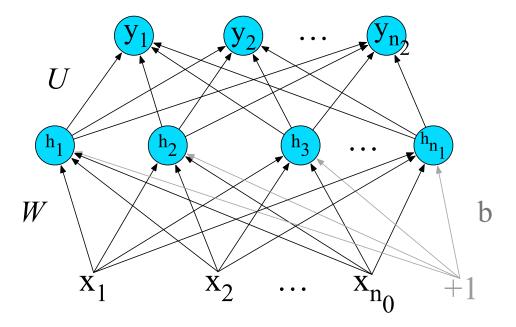
 \circ *z=Uh*



- Here are the final equations for a feedforward network with a single hidden layer, which takes an input vector *x*, outputs a probability distribution *y*, and is parameterized by weight matrices *W* and *U* and a bias vector *b*:
- $h = \sigma(Wx+b)$ z = Uhy = softmax(z)
- Like with logistic regression, softmax normalizes the output and turns it into a probability distribution.

- The simplest kind of is the **Feed-Forward Neural Network**
- **Multilayer** network, all units are usually **fully-connected**, and **no cycles**.
- The outputs from each layer are passed to units in the next higher layer, and no outputs are passed back to lower layers.



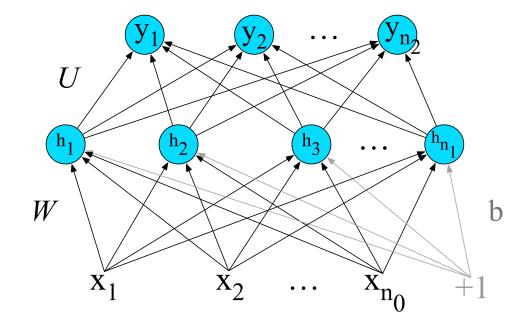


- A single hidden unit has parameters *w* (the weight vector) and *b* (the bias scalar).
- We represent the parameters for the entire hidden layer by combining the weight vector w; and bias b; for each unit i into a single weight matrix W and a single bias vector b for the whole layer.

👼 Penn Engineering

- $_{\odot}$ The advantage of using a single matrix ${\it W}$ for the weights of the entire layer is the hidden layer computation can be done efficiently with simple matrix operations.
- $_{\circ}$ The computation has three steps:
- 1. multiplying the weight matrix by the input vector x,
 2. adding the bias vector b, and
 3. applying the activation function g (such as Sigmoid)
- $_{\odot}\,$ The output of the hidden layer, the vector *h*, is thus the following, using the sigmoid function σ :

 $\circ h = \sigma(Wx+b)$



Like the hidden layer, the output layer has a weight matrix *U*.
 Its weight matrix is multiplied by its input vector (*h*) to produce the intermediate output *z*.

- Here are the final equations for a feedforward network with a single hidden layer, which takes an input vector *x*, outputs a probability distribution *y*, and is parameterized by weight matrices *W* and *U* and a bias vector *b*:
- $h = \sigma(Wx+b)$ z = Uhy = softmax(z)
- Like with logistic regression, softmax normalizes the output and turns it into a probability distribution.

Training Neural Nets

- Like logistic regression, we want to learn the best parameters for the neural net to make its predictions \hat{y} as close to possible as the gold standard labels in our training data *y*.
- What do we need?
- **A loss function** cross-entropy loss
- An optimization algorithm gradient descent
- A way of computing the gradient of the loss function error propagation

Cross-Entropy Loss

 If the neural network is a binary classifier with a sigmoid at the final layer, the loss function is exactly the same as we saw in logistic regression:

•
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1 - y)\log(1 - \hat{y})]$$

Cross-Entropy Loss

- If the neural network is a binary classifier with a sigmoid at the final layer, the loss function is exactly the same as we saw in logistic regression:
- $\circ \quad L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1 y) \log(1 \hat{y})]$
- For multinomial classification

$$\Box \quad L_{CE}(\hat{y}, y) = -\sum_{i=1}^{C} y_i \log \hat{y}_i$$

- If there is only one correct answer, where the truth is $y_i=1$, then this simplifies to be
- $\circ \quad L_{CE}(\hat{y}, y) = -\log \hat{y}_i$
- Plugging into softmax:

$$\circ \quad L_{CE}(\hat{y}, y) = -\log \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}}$$

Computing the gradient

 Logistic regression can be thought of as a network with just one weight layer and a sigmoid output. In that case the gradient is:

$$\circ \quad \frac{\partial LCE(w,b)}{\partial wj} = (\hat{y} - y) xj$$

$$\circ \qquad \qquad = (\sigma(w \cdot x + b) - y)x_j$$

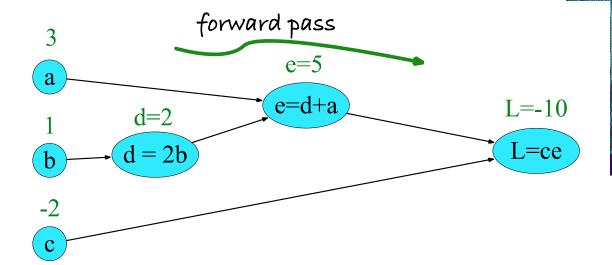
 But these derivatives only give correct updates for the last weight layer! For deeper networks, computing the gradients requires looking back through all the earlier layers in the network, even though the loss is only computed with respect to the output of the network. Solution: error backpropagation algorithm

Computation Graphs

- Although backpropagation was invented for neural nets, it is related to general procedure called **backward differentiation**, which depends on the notion of **computation graphs**.
- A computation graph represents the process of computing a mathematical expression. The computation is broken down into separate operations. Each operation is a node in a graph.

L(a, b, c) = c(a + 2b)	d = 2*b
	e = a+d
	L = c*e

Forward pass



L(a, b, c) = c(a + 2b)	<i>d</i> = 2* <i>b</i>
	e = a + d
	<i>L</i> = <i>c</i> * <i>e</i>

inputs a = 3, b = 1, c = -2,

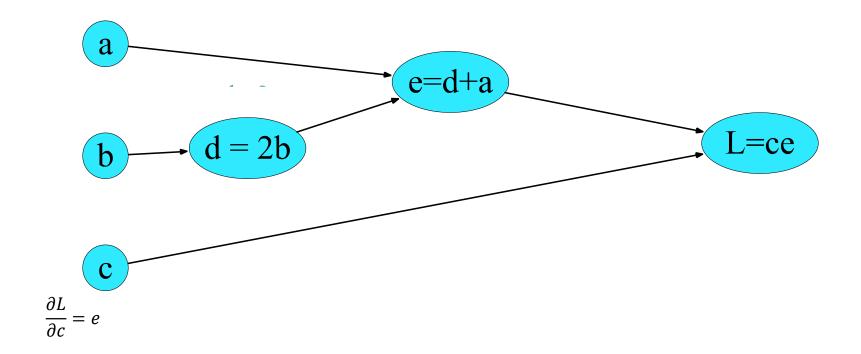
Backward differentiation

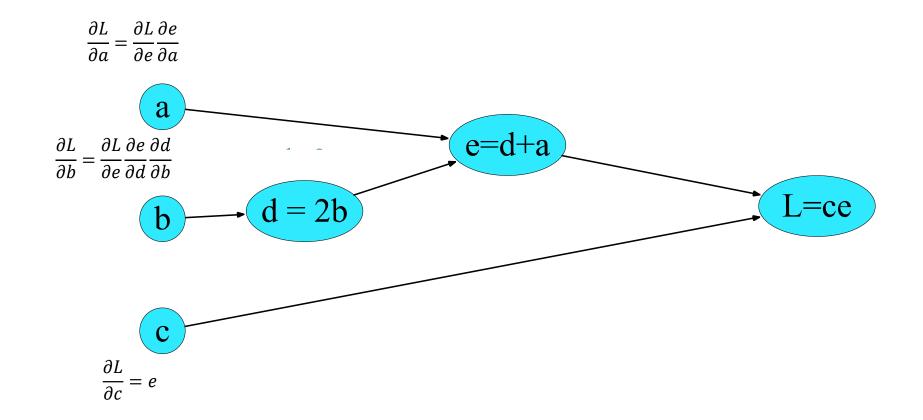
- The importance of the computation graph comes from the backward pass, which is used to compute the derivatives that we'll need for the weight update.
- How do we compute the derivative of our output function L with respect to the input variables a, b, and c? $\frac{\partial L}{\partial a}, \frac{\partial L}{\partial b}, \text{ and } \frac{\partial L}{\partial c}$
- Backwards differentiation uses the **chain rule** from calculus.

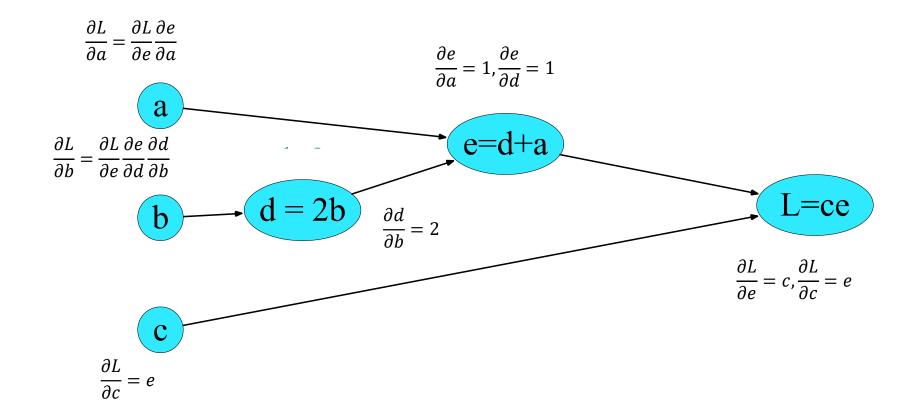
Chain rule

• For a composite function df(x) = du(v(x))v the derivative of f(x) is: $\frac{du(v(x))v}{dx} = \frac{du(v(x))v}{dx}$

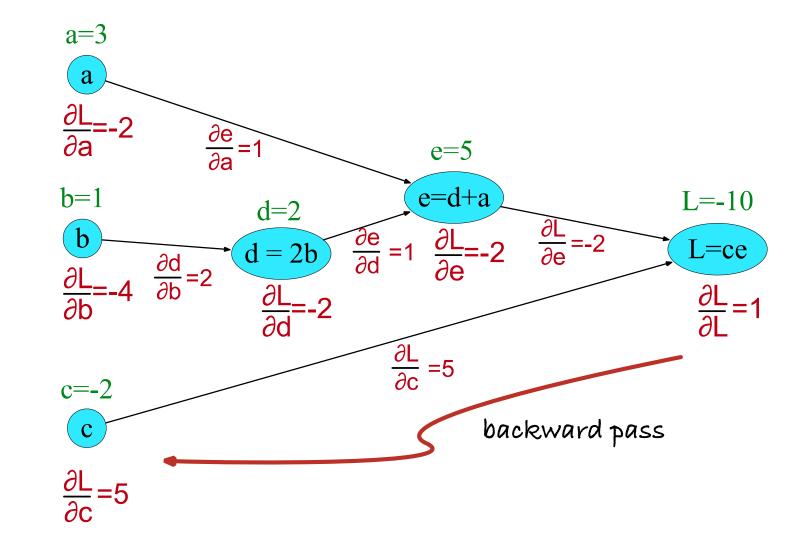
• Similarly for,
$$f(x) = u(v(w(dxf)))$$
, the dedivations of $f(x)$ is:
• $\frac{dx}{dx} = \frac{dv}{dv} \cdot \frac{dw}{dx} \cdot \frac{dw}{dx}$







Backward pass



Computation Graph for a NN

