R,

in Chapter 7

1ne erlng

UNIVERSITY of PENNSYLVANIA

:

ARTIFICIAL INTELLIGENCE
Eng

CIS 421/521

Neural
Networks

Jurafsky and Mart

Review: Perceptron

o Perceptrons were developed in the 1950s and 1960s

loosely inspired by the neuron.

I output

Axonal arborization

Axon from another cell

\

Synapse
Dendrite

Nucleus

\/

Synapses

Cell body or Soma

Eléctronic ‘Brain’ Teaches Iiself

The Navy last week demonstrated
the embryo of an electronic com-
puter named the Percaptron which,
when completed in about a year, is
expected to be the first non-living
mechanism able to “perceive, recog-
nize ahd identify its surroundings
without human training or control.”
Navy officers demonstrating a pre-
liminary form of the device in
Washington said they hesitated to
call it a machine because it is so
much like a “human being without
life.”

Dr. Frank Rosenblatt, research
psychoelogist at the Cornell Aero-
nautical Laboratory, Inc., Buffalo,
N. Y., designer of the Perceptron.
conducted the demonstration, Th=
machine, he said, would be the first
electronic device to think as the
human brain. Like humans, Per-
ceptron will make mistakes at first,
“but it will grow wiser as it, gains
experience,” he said.

The first Perceptron, to cost about
$100,000, will have about 1,000 elec-
tronie “association cells" receiving
electrical impulses from an eyelike
scanning device with 400 photocells.

The human brain has ten hﬂlio‘ﬂ_

recognize the difference between
right and left, almost the way a
child learns.

When fully developed, the Per-
ceptron will be designed to remem-
ber images and information it has
perceived itself, whereas ordinary
computers remember only what is
fed into them on punch cards ov
magnetic tape,

Later Perceptrons, Dr Rosenblatt
sald, will be able to recognize ped-
ple and call out their names. Printed
pages, longhand letters and even
speech commands are within its
reach. Only one more step of devel-
opment, a difficult step, he said, is
needed for the device to hear speech
in one language and instantly
translate it to speech or writing in
another language.

Self-Reproduction

In principle, Dr, Rosenblatt said,
it would be possible to build Per-
ceptrons that could reproduce them-
selves on an assembly line and .
which would be “conscious” of thelr
existence, .

Perceptron, it was pointed ouf.
needs no "priming" It is not nec- .

ADR-NTAR ey |

Neural Networks

o The building block of a neural network is a single computational unit.
A unit takes a set of real valiied niimhers as input, performs some
computation. Y

a

X X, X; +1

@ Penn Engineering

Neural Networks: A brain-inspired
metaphor

Dendrites Terminal branches of axon

(receive messages (form junctions with other cells)
from other cells)

Axon

(passes messages away
from the cell body to
other neurons,

muscles, or glands

f
]
-

Myelin sheath

(covers the axon
Neural impulse (action potential) of some neurons
(electrical signal traveling and helps speed

down the axon) neural impulses)

Cell body
(the cell’s life-
support center)

Penn Engineering

Output
Neuron
Input

.

A single neuron

o0
=
]
3
=
20

'Penn E

&

Neural networks

NES Q‘i‘}“/

Output layer

Dendrites

Hidden layer

/)

R oroete

g’,@*@%«"“

o

s\,

N
\\#§

Dendrites

e

X

)

Hidden layer

\ Axon

Input layer

‘& Penn Engineering

.

Perceptron -> Logistic Regression

o Like the Perceptron, logistic regression uses a vector of weights and
a bias term.

o Z=);Wix;i+Db
o This can also be written as a dot product:
o Z=W-X+Db

o Instead of outputting z directly, logistic regression transforms it with
the sigmoid function o(z).

@ Penn Engineering

Perceptron

Z=wW-x+5b

step function

1.0 -

0.8-
0 ifw-x+b<0

0.6- output = .
1 fw-x+b>0

0.4

0.2 -

0.0 I I I I I | I I 1

Penn Engineering

Sigmoid neurons

o Problem: a small change in the weights or bias of any single
perceptron in the network can causes the output to completely flip

from O to 1.
i i : Perceptron : .
o Solution: sigmoid neuron output = 4 0 Hwrx+b<0
1 fw-x+b>0
I
Sigmoid neuron
T2 output output = O-(W X+ b)
Output is no longer
T3 Same weights and just 1 or 0. Sigmoid function: 1
bias as perceptron O'(Z) =

I +e?

Inputs: any real-
valued number

@ Penn Eng]'neering

Sigmoid neuron

Z=w-Xx+ btion

1.0
0.8 -
Z =w-x + b is alarge positive number. Then e~? ~ 0
0.6 -
0.4
0.2
00 I I | | | | | | | 1
-4 -3 -2 -1 0 1 2 3 4
‘ 1
z=w-x+ bis very negative. Then e - o0, and 6(z) ~ 0 O-(Z) = 1+—z
e

Penn Engineering

Smoothness is crucial

o Smoothness of 0 means that small changes in the weights w; and in
the bias b will produce a small change the output from the reuron

0 output 0 output

+ Ab
ow, T T ob

Aoutput =
J

o Aoutputis a linear function of the changes Awj and Ab

o This makes it easy to choose small changes in the weights and biases
to achieve any desired small change in the output

@ Penn Engineering

Activation Functions

o Instead of directly outputting z = w-x+b, which is a linear function of x, neuron units apply a non-linear
function fto z

o The output of this function is called the activation value for the unit, represented by the variable a.
The output of a neural network is called y, so if the activation of a node is the final output of a network
then

o y=0=f(2)

o There are 3 commonly used non-linear functions used for f:
The sigmoid function
The tanh function
The rectified linear unit ReLU

1.0

0.e

0.6

04

0.z

0.0 3 = =3 0 2] 6 8
2

The sigmoid function

@ Penn Eng]'neering

Activation Functions

1.0 1.0
o8 0.5
_ —z =
g Y=1/(1+e7) 2
Y & 0.0
0.4 Il
>
-0.5
0.2
The sigmoid function tanh
0.057 - -1 -2] Z 4 B B -1.015 -5 0 5 10
zZ
10
5
=)
B
5 0
g
I
=
-5
RelLU
—1015 _5 0 5 10

Penn Engineering

Feed-Forward Neural Network

o The simplest kind of NN is the Feed-Forward Neural Network
o Multilayer network, all units are usually fully-connected, and no cycles.

o The outputs from each layer are passed to units in the next higher layer, and no outputs are passed

back to lower layers.

Layer 2 (output layer)

Layer 1 (hidden layer)

Layer O (input layer)
@ Penn Engineering

Equations for a feedforward network

o Asingle hidden unit has parameters w (the weight vector) and b (the bias scalar).

o We represent the parameters for the entire hidden layer by combining the weight vector w;
and bias b; for each unit i into a single weight matrix W and a single bias vector b for the
whole layer.

Xl X2 . o XnO —|—1

@ Penn Eng]'neering

Equations for a feedforward network

o The advantage of using a single matrix W for the weights of the entire
layer is the hidden layer computation can be done efficiently with
simple matrix operations.

o The computation has three steps:

o 1. multiplying the weight matrix by the input vector x,
2. adding the bias vector b, and
3. applying the activation function g (such as Sigmoid)

o The output of the hidden layer, the vector h, is thus the following,
using the sigmoid function o:

h = o(Wx+b)

‘& Penn Engineering

Equations for a feedforward network

o Like the hidden layer, the output layer has a weight matrix U.
Its weight matrix is multiplied by its input vector (h) to produce the
intermediate output z.

o z=Uh

@ Penn Eng]'neering

Equations for a feedforward network

o Here are the final equations for a feedforward network with a single

hidden layer, which takes an input vector x, outputs a probability
distribution y, and is parameterized by weight matrices W and U and

a bias vector b:
o h = o(Wx+b)

z=Uh

y = softmax(z)

o Like with logistic regression, softmax normalizes the output and
turns it into a probability distribution.

@ Penn Engineering

Review: Feed-Forward Neural Network

o The simplest kind of is the Feed-Forward Neural Network
o Multilayer network, all units are usually fully-connected, and no cycles.

o The outputs from each layer are passed to units in the next higher layer, and no outputs are passed

back to lower layers.

Layer 2 (output layer)

Layer 1 (hidden layer)

Xl X2 .o Xno +1

@ Penn Engineering

Layer O (input layer)

Review: Feed-Forward Neural Network

+1

o Asingle hidden unit has parameters w (the weight
vector) and b (the bias scalar).

o We represent the parameters for the entire hidden
layer by combining the weight vector w; and bias b;
for each unit i into a single weight matrix W and a
single bias vector b for the whale layer.

@ Penn Engineering

Review: Feed-Forward Neural Network

o The advantage of using a single matrix W for the weights of the entire
layer is the hidden layer computation can be done efficiently with
simple matrix operations.

o The computation has three steps:

o 1. multiplying the weight matrix by the input vector x,
2. adding the bias vector b, and
3. applying the activation function g (such as Sigmoid)

o The output of the hidden layer, the vector h, is thus the following,
using the sigmoid function o:

o h = o(Wx+b)

‘& Penn Engineering

Review: Feed-Forward Neural Network

+1

o Like the hidden layer, the output layer has a weight
matrix U.
Its weight matrix is multiplied by its input vector (h)
to produce the intermediate output z.

@ Penn Engineering

Review: Feed-Forward Neural Network

o Here are the final equations for a feedforward network with a single

hidden layer, which takes an input vector x, outputs a probability
distribution y, and is parameterized by weight matrices W and U and

a bias vector b:
o h = o(Wx+b)

z=Uh

y = softmax(z)

o Like with logistic regression, softmax normalizes the output and
turns it into a probability distribution.

@ Penn Engineering

Training Neural Nets

o Like logistic regression, we want to learn the best parameters for the
neural net to make its predictions y as close to possible as the gold
standard labels in our training data y.

o What do we need?
o Aloss function - cross-entropy loss
o An optimization algorithm - gradient descent

o A way of computing the gradient of the loss function - error
propagation

@ Penn Engineering

Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final
layer, the loss function is exactly the same as we saw in logistic

regression:

o Lep(3,y) = —logp(ylx) = —[ylogy + (1 —y)log(1l —)]

@ Penn Engineering

Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final layer, the loss function is
exactly the same as we saw in logistic regression:

o L(3y) =—logplylx) = —[ylogy+ (1 —y)log(l — P)]

o For multinomial classification

o Lis(3y)= — Zg:ﬂ’i logy;

o If thereis only one correct answer, where the truth is y,=7, then this simplifies to be
o L@ y) = —logy,

o Plugging into softmax:

J

o L3y = —logz,_{eliez
]=

@ Penn Engineering

Computing the gradient

o Logistic regression can be thought of as a network with just one
weight layer and a sigmoid output. In that case the gradient is:

JLCE(w,b)

° T =0 -

o = (0w -x +b) —y)x,

o But these derivatives only give correct updates for the last weight
layer! For deeper networks, computing the gradients requires looking
back through all the earlier layers in the network, even though the
loss is only computed with respect to the output of the network.

Solution: error backpropagation algorithm

‘& Penn Engineering

Computation Graphs

o Although backpropagation was invented for neural nets, it is related
to general procedure called backward differentiation, which
depends on the notion of computation graphs.

o A computation graph represents the process of computing a
mathematical expression. The computation is broken down into
separate operations. Each operation is a node in a graph.

L(a, b, c) =c(a + 2b) d=2xb
e =a+d
L=cxe

@ Penn Engineering

Forward pass

-forward pass

L(a, b, c) =c(a + 2b) d=2xb
e =a+d
L=cxe

inputsa=3,b=1,c=-2,

& Penn Engineering
$ S S

Backward differentiation

o The importance of the computation graph comes from the backward

pass, which is used to compute the derivatives that we'll need for the
weight update.

o How do we compute the derivative of our output function L with

respect to the input variables a, b, and ¢?
% O and &
da’ b’ oc

o Backwards differentiation uses the chain rule from calculus.

@ Penn Engineering

Chain rule

o For a composite functiorw]()() =d4v(xpythe derivative of f(x) is:
dx ~ dv dx

o Similarly for, f(x) = u(v(wdg))),_tkiadedniatdw of f(x) is:
o dx dv dw dx

‘& Penn Engineering

& Penn Engineering

oL oL de
da 0deda

oL oL ah.\

ab dedd db

".

& Penn Engineering

oL _ dL de
da 0deda de

ob e od db

oL
ae_c'ac_

e

Backward pass

Computation Graph for a NN

e >
o _emdd
o

&@_/

	Neural Networks
	Review: Perceptron
	Neural Networks
	Neural Networks: A brain-inspired metaphor
	A single neuron
	Neural networks
	Perceptron -> Logistic Regression
	Perceptron
	Sigmoid neurons
	Sigmoid neuron
	Smoothness is crucial
	Activation Functions
	Activation Functions
	Feed-Forward Neural Network
	Equations for a feedforward network
	Equations for a feedforward network
	Equations for a feedforward network
	Equations for a feedforward network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Training Neural Nets
	Cross-Entropy Loss
	Cross-Entropy Loss
	Computing the gradient
	Computation Graphs
	Forward pass
	Backward differentiation
	Chain rule
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Backward pass
	Computation Graph for a NN

