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Review: Feed-Forward Neural Network

o The simplest kind of is the Feed-Forward Neural Network
o Multilayer network, all units are usually fully-connected, and no 

cycles.
o The outputs from each layer are passed to units in the next higher 

layer, and no outputs are passed back to lower layers. 

Layer 0 (input layer) 

Layer 1 (hidden layer) 

Layer 2 (output layer) 



Review: Feed-Forward Neural Network

o A single hidden unit has parameters w (the weight vector) and b (the bias scalar). 
o We represent the parameters for the entire hidden layer by combining the weight vector wi

and bias bi for each unit i into a single weight matrix W and a single bias vector b for the 
whole layer.

Layer 0 (input layer) 

Layer 1 (hidden layer) 

Layer 2 (output layer) 



Review: Feed-Forward Neural Network

o The advantage of using a single matrix W for the weights of the entire 
layer is the hidden layer computation can be done efficiently with 
simple matrix operations. 

o The computation has three steps: 
o 1. multiplying the weight matrix by the input vector x, 

2. adding the bias vector b, and 
3. applying the activation function g (such as Sigmoid)

o The output of the hidden layer, the vector h, is thus the following, 
using the sigmoid function σ: 

o h = σ(Wx+b) 



Review: Feed-Forward Neural Network
o Like the hidden layer, the output layer has a weight  matrix U.

Its weight matrix is multiplied by its input vector (h) to produce the 
intermediate output z. 

o z=Uh 

Layer 0 (input layer) 

Layer 1 (hidden layer) 

Layer 2 (output layer) 



Review: Feed-Forward Neural Network

o Here are the final equations for a feedforward network with a single 
hidden layer, which takes an input vector x, outputs a probability 
distribution y, and is parameterized by weight matrices W and U and 
a bias vector b: 

o h = σ(Wx+b)
z = Uh
y = softmax(z) 

o Like with logistic regression, softmax normalizes the output and 
turns it into a probability distribution. 



Training Neural Nets

o Like logistic regression, we want to learn the best parameters for the 
neural net to make its predictions �𝑦𝑦 as close to possible as the gold 
standard labels in our training data y.

o What do we need?
o A loss function – cross-entropy loss
o An optimization algorithm – gradient descent
o A way of computing the gradient of the loss function – error 

propagation 



Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final 
layer, the loss function is exactly the same as we saw in logistic 
regression:

𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦, 𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]



Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final layer, the loss function is 
exactly the same as we saw in logistic regression:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]

o For multinomial classification
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − ∑𝑖𝑖=1𝐶𝐶 𝑦𝑦𝑖𝑖 log �𝑦𝑦𝑖𝑖

o If there is only one correct answer, where the truth is yi=1, then this simplifies to be
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log �𝑦𝑦𝑖𝑖

o Plugging into softmax: 

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑒𝑒𝑧𝑧𝑖𝑖
∑𝑗𝑗=1
𝐾𝐾 𝑒𝑒𝑧𝑧𝑗𝑗



Computing the gradient

o Logistic regression can be thought of as a network with just one weight 
layer and a sigmoid output.  In that case the gradient is: 

o
𝜕𝜕𝜕𝜕𝐶𝐶𝜕𝜕(𝑤𝑤,𝑏𝑏)

𝜕𝜕𝑤𝑤𝜕𝜕
= �𝑦𝑦 − 𝑦𝑦 𝑥𝑥𝑥𝑥

o = 𝜎𝜎 𝑤𝑤 � 𝑥𝑥 + 𝑏𝑏 − 𝑦𝑦 𝑥𝑥𝑥𝑥

o But these derivatives only give correct updates for the last weight layer! 
o For deeper networks, computing the gradients requires looking back 

through all the earlier layers in the network, even though the loss is only 
computed with respect to the output of the network. 

Solution: error backpropagation algorithm



Computation Graphs

o Although backpropagation was invented for neural nets, it is related 
to general procedure called backward differentiation, which 
depends on the notion of computation graphs. 

o A computation graph represents the process of computing a 
mathematical expression.  The computation is broken down into 
separate operations.  Each operation is a node in a graph. 

L(a, b, c) = c(a + 2b) d = 2∗b 
e = a+d
L = c∗e



Forward pass

L(a, b, c) = c(a + 2b) d = 2∗b 
e = a+d
L = c∗e

inputs a = 3, b = 1, c = −2, 



Backward differentiation

o The importance of the computation graph comes from the backward 
pass, which is used to compute the derivatives that we’ll need for the 
weight update. 

o How do we compute the derivative of our output function L with 
respect to the input variables a, b, and c?

o Backwards differentiation uses the chain rule from calculus.  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏

, and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕



Chain rule

o For a composite function f(x) = u(v(x)), the derivative of f(x) is:

o
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

o Similarly for, f(x) = u(v(w(x))), the derivative of f(x) is: 

o
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤

� 𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑

o



𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝑒𝑒



𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝑒𝑒
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𝜕𝜕𝜕𝜕 = 1,
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𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒 = 𝜕𝜕,
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𝜕𝜕𝜕𝜕 = 𝑒𝑒



Backward pass



Computation Graph for a NN

𝑧𝑧[1] = 𝑊𝑊[1] 𝐱𝐱 + 𝑏𝑏[1]

𝜕𝜕[1] = ReLU 𝑧𝑧 1

𝑧𝑧[2] = 𝑊𝑊[2]𝜕𝜕[1] + 𝑏𝑏[2]

𝜕𝜕[2] = 𝜎𝜎 𝑧𝑧 2

�𝑦𝑦 = 𝜕𝜕[2]



Neural Language Models



Language Models

o Estimate the probability of a sentence consisting of word sequence w1:n

o 𝑃𝑃 𝑤𝑤1:𝑛𝑛 ≈ ∏𝑖𝑖=1
𝑛𝑛 𝑃𝑃 𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖−1)

o We need to estimate the probability of P(wi+1|wk-i:i) from a large corpus.

o �̂�𝑝𝑀𝑀𝜕𝜕𝜕𝜕 𝑤𝑤𝑖𝑖+1 = 𝑚𝑚 | 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖 = #(𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖+1)
#(𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖)

o �̂�𝑝𝜕𝜕𝑑𝑑𝑑𝑑−𝛼𝛼 𝑤𝑤𝑖𝑖+1 = 𝑚𝑚 | 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖 = # 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖+1 + 𝛼𝛼
# 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖 + 𝛼𝛼|𝑉𝑉|



Neural Language Models

o Neural Language models have several advantages over n-gram LMs:
o 1. They don’t need smoothing
o 2. They can handle much longer histories.
o 3. They can generalize over contexts of similar words.
o 4. Neural LMs tend to have much higher predictive accuracy than n-

gram LMs.

o Disadvantage: slower to train than traditional n-gram LMs



Neural LMs (Bengio et al 2003)

1. Associate each word in the vocabulary with a vector-representation, 
thereby creating a notion of similarity between words.

2. Express the joint probability function of a word sequence in terms of 
the word vectors for the words in that sequence.

3. Simultaneously learn the word vectors and the parameters of the 
function.

o The word vectors are low-dimensional (d=30 to d=100) dense vectors, 
like we’ve seen before.

o The probability function is expressed  the product of conditional 
probabilities of the next word given the previous word, using a multi-
layer, feed forward neural network.



Neural LMs

o The input to the neural network is a k-gram of words w1:k. 
o The output is a probability distribution over the next word. 
o The k context words are treated as a word window.  Each word is 

associated with an embedding vector:

o The input vector x just concatenates v(w) for each of the k words: 
o



Neural LMs

o The input x is fed into a neural network with 1 or more hidden layers: 
o





Training

o The training examples are simply word k-grams from the corpus
o The identities of the first k+1 words are used as features, and the last 

word is used as the target label for the classification. 
o Conceptually, the model is trained using cross-entropy loss. 



Advantages of NN LMs

o Better results.  They achieve better preplexity scores than SOTA n-
gram LMs.

o Larger N.  NN LMs can scale to much larger orders of n. This is 
achievable because parameters are associated only with individual 
words, and not with n-grams. 

o They generalize across contexts. For example, by observing that 
the words blue, green, red, black, etc. appear in similar contexts, the 
model will be able to assign a reasonable score to the green car even 
though it never observed in training, because it did observe blue car 
and red car.

o A by-product of training are word embeddings



Language Modeling 

o Goal: Learn a function that returns the joint probability 
o Primary difficulty: 

1. There are too many parameters to accurately estimate.  This is 
sometimes called the “curse of dimensionality”

2. In n-gram-based models we fail to generalize to related words / word 
sequences that we have observed.



Curse of dimensionality / sparse 
statistics 
o Suppose we want a joint distribution over 10 words.

Suppose we have a vocabulary of size 100,000. 
o 100,00010 =1050 parameters

o This is too high to estimate from data.



Chain rule

o In LMs we user chain rule to get the conditional probability of the next 
word in the sequence given all of the previous words:

o 𝑃𝑃(𝑤𝑤1𝑤𝑤2𝑤𝑤3…𝑤𝑤𝑡𝑡) = ∏𝑡𝑡=1
𝑇𝑇 𝑃𝑃(𝑤𝑤𝑡𝑡|𝑤𝑤1…𝑤𝑤𝑡𝑡−1)

o What assumption do we make in n-gram LMs to simplify this?  
o The probability of the next word only depends on the previous n-1 words.
o A small n makes it easier for us to get an estimate of the probability from 

data.



Probability tables

o We construct tables to look up the 
probability of seeing a word given a history.

o The tables only store observed sequences.  
o What happens when we have a new (unseen) 

combination of n words?

curse of P(wt | wt-n … wt-1)

dimensionality

azure

knowledge

oak



Unseen sequences

o What happens when we have a new (unseen) combination of n 
words?

1. Back-off
2. Smoothing / interpolation 
o We are basically just stitching together short sequences of observed 

words.



Alternate idea
o Let’s try generalizing.
o Intuition: Take a sentence like

o The cat is walking in the bedroom

o And use it when we assign probabilities to similar sentences like

o The dog is running around the room



A Neural Probabilistic LM

1. Use a vector space model where the words are vectors with real 
values ℝm.  m=30, 60, 100.  This gives a way to compute word 
similarity. 

2. Define a function that returns a joint probability of words in a 
sequence based on a sequence of these vectors. 

3. Simultaneously learn the word representations and the probability 
function from data.

o Seeing one of the cat/dog sentences allows them to increase the 
probability for that sentence and its combinatorial # of “neighbor” 
sentences in vector space.

Bengio et al NIPS 2003



A Neural Probabilistic LM

o Given: 
A training set w1 … wt where wt ∈V

o Learn:
f(w1 … wt) = P(wt|w1 … wt-1)
Subject to giving a high probability to an unseen text/dev set (e.g. minimizing 
the perplexity)

o Constraint: 
Create a proper probability distribution (e.g. sums to 1) so that we can take 
the product of conditional probabilities to get the joint probability of a 
sentence



A Neural Probabilistic LM

1. Create a mapping function C from any word in V onto ℝM. Store this 
in a V-by-M matrix.  Initialize it with singular value decomposition 
(SVD).

2. The neural architecture: a function g maps sequence of word vectors 
onto a probability distribution over the vocabulary V

o g(C(wt-n) … C(wt-1)) = P(wt|wt-n … wt-1)





Word embeddings
o When the ~50 dimensional vectors that result from training a neural 

LM are projected down to 2-dimensions, we see a lot of words that 
are intuitively similar to each other are close together.



Current state of the art neural LMs

o ELMo
o GPT
o BERT
o GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/
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