
CIS 421/521:
ARTIFICIAL INTELLIGENCE
CIS 421/521:
ARTIFICIAL INTELLIGENCE

Neural
Networks and
Neural LMs
Jurafsky and Martin Chapters 7 and 9

Review: Feed-Forward Neural Network

o The simplest kind of is the Feed-Forward Neural Network
o Multilayer network, all units are usually fully-connected, and no

cycles.
o The outputs from each layer are passed to units in the next higher

layer, and no outputs are passed back to lower layers.

Layer 0 (input layer)

Layer 1 (hidden layer)

Layer 2 (output layer)

Review: Feed-Forward Neural Network

o A single hidden unit has parameters w (the weight vector) and b (the bias scalar).
o We represent the parameters for the entire hidden layer by combining the weight vector wi

and bias bi for each unit i into a single weight matrix W and a single bias vector b for the
whole layer.

Layer 0 (input layer)

Layer 1 (hidden layer)

Layer 2 (output layer)

Review: Feed-Forward Neural Network

o The advantage of using a single matrix W for the weights of the entire
layer is the hidden layer computation can be done efficiently with
simple matrix operations.

o The computation has three steps:
o 1. multiplying the weight matrix by the input vector x,

2. adding the bias vector b, and
3. applying the activation function g (such as Sigmoid)

o The output of the hidden layer, the vector h, is thus the following,
using the sigmoid function σ:

o h = σ(Wx+b)

Review: Feed-Forward Neural Network
o Like the hidden layer, the output layer has a weight matrix U.

Its weight matrix is multiplied by its input vector (h) to produce the
intermediate output z.

o z=Uh

Layer 0 (input layer)

Layer 1 (hidden layer)

Layer 2 (output layer)

Review: Feed-Forward Neural Network

o Here are the final equations for a feedforward network with a single
hidden layer, which takes an input vector x, outputs a probability
distribution y, and is parameterized by weight matrices W and U and
a bias vector b:

o h = σ(Wx+b)
z = Uh
y = softmax(z)

o Like with logistic regression, softmax normalizes the output and
turns it into a probability distribution.

Training Neural Nets

o Like logistic regression, we want to learn the best parameters for the
neural net to make its predictions �𝑦𝑦 as close to possible as the gold
standard labels in our training data y.

o What do we need?
o A loss function – cross-entropy loss
o An optimization algorithm – gradient descent
o A way of computing the gradient of the loss function – error

propagation

Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final
layer, the loss function is exactly the same as we saw in logistic
regression:

𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦, 𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]

Cross-Entropy Loss

o If the neural network is a binary classifier with a sigmoid at the final layer, the loss function is
exactly the same as we saw in logistic regression:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑝𝑝 𝑦𝑦 𝑥𝑥 = −[𝑦𝑦 log �𝑦𝑦 + 1 − 𝑦𝑦 log(1 − �𝑦𝑦)]

o For multinomial classification
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − ∑𝑖𝑖=1𝐶𝐶 𝑦𝑦𝑖𝑖 log �𝑦𝑦𝑖𝑖

o If there is only one correct answer, where the truth is yi=1, then this simplifies to be
o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log �𝑦𝑦𝑖𝑖

o Plugging into softmax:

o 𝐿𝐿𝐶𝐶𝐶𝐶 �𝑦𝑦,𝑦𝑦 = − log 𝑒𝑒𝑧𝑧𝑖𝑖
∑𝑗𝑗=1
𝐾𝐾 𝑒𝑒𝑧𝑧𝑗𝑗

Computing the gradient

o Logistic regression can be thought of as a network with just one weight
layer and a sigmoid output. In that case the gradient is:

o
𝜕𝜕𝜕𝜕𝐶𝐶𝜕𝜕(𝑤𝑤,𝑏𝑏)

𝜕𝜕𝑤𝑤𝜕𝜕
= �𝑦𝑦 − 𝑦𝑦 𝑥𝑥𝑥𝑥

o = 𝜎𝜎 𝑤𝑤 � 𝑥𝑥 + 𝑏𝑏 − 𝑦𝑦 𝑥𝑥𝑥𝑥

o But these derivatives only give correct updates for the last weight layer!
o For deeper networks, computing the gradients requires looking back

through all the earlier layers in the network, even though the loss is only
computed with respect to the output of the network.

Solution: error backpropagation algorithm

Computation Graphs

o Although backpropagation was invented for neural nets, it is related
to general procedure called backward differentiation, which
depends on the notion of computation graphs.

o A computation graph represents the process of computing a
mathematical expression. The computation is broken down into
separate operations. Each operation is a node in a graph.

L(a, b, c) = c(a + 2b) d = 2∗b
e = a+d
L = c∗e

Forward pass

L(a, b, c) = c(a + 2b) d = 2∗b
e = a+d
L = c∗e

inputs a = 3, b = 1, c = −2,

Backward differentiation

o The importance of the computation graph comes from the backward
pass, which is used to compute the derivatives that we’ll need for the
weight update.

o How do we compute the derivative of our output function L with
respect to the input variables a, b, and c?

o Backwards differentiation uses the chain rule from calculus.
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏

, and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

Chain rule

o For a composite function f(x) = u(v(x)), the derivative of f(x) is:

o
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

o Similarly for, f(x) = u(v(w(x))), the derivative of f(x) is:

o
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤

� 𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑

o

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝑒𝑒

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝑒𝑒

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒

𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏 =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒

𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒

𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏 =

𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒

𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝑒𝑒

𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕 = 1,

𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕 = 1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏 = 2

𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒 = 𝜕𝜕,

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝑒𝑒

Backward pass

Computation Graph for a NN

𝑧𝑧[1] = 𝑊𝑊[1] 𝐱𝐱 + 𝑏𝑏[1]

𝜕𝜕[1] = ReLU 𝑧𝑧 1

𝑧𝑧[2] = 𝑊𝑊[2]𝜕𝜕[1] + 𝑏𝑏[2]

𝜕𝜕[2] = 𝜎𝜎 𝑧𝑧 2

�𝑦𝑦 = 𝜕𝜕[2]

Neural Language Models

Language Models

o Estimate the probability of a sentence consisting of word sequence w1:n

o 𝑃𝑃 𝑤𝑤1:𝑛𝑛 ≈ ∏𝑖𝑖=1
𝑛𝑛 𝑃𝑃 𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖−1)

o We need to estimate the probability of P(wi+1|wk-i:i) from a large corpus.

o �̂�𝑝𝑀𝑀𝜕𝜕𝜕𝜕 𝑤𝑤𝑖𝑖+1 = 𝑚𝑚 | 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖 = #(𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖+1)
#(𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖)

o �̂�𝑝𝜕𝜕𝑑𝑑𝑑𝑑−𝛼𝛼 𝑤𝑤𝑖𝑖+1 = 𝑚𝑚 | 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖 = # 𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖+1 + 𝛼𝛼
𝑤𝑤𝑖𝑖−𝑘𝑘:𝑖𝑖 + 𝛼𝛼|𝑉𝑉|

Neural Language Models

o Neural Language models have several advantages over n-gram LMs:
o 1. They don’t need smoothing
o 2. They can handle much longer histories.
o 3. They can generalize over contexts of similar words.
o 4. Neural LMs tend to have much higher predictive accuracy than n-

gram LMs.

o Disadvantage: slower to train than traditional n-gram LMs

Neural LMs (Bengio et al 2003)

1. Associate each word in the vocabulary with a vector-representation,
thereby creating a notion of similarity between words.

2. Express the joint probability function of a word sequence in terms of
the word vectors for the words in that sequence.

3. Simultaneously learn the word vectors and the parameters of the
function.

o The word vectors are low-dimensional (d=30 to d=100) dense vectors,
like we’ve seen before.

o The probability function is expressed the product of conditional
probabilities of the next word given the previous word, using a multi-
layer, feed forward neural network.

Neural LMs

o The input to the neural network is a k-gram of words w1:k.
o The output is a probability distribution over the next word.
o The k context words are treated as a word window. Each word is

associated with an embedding vector:

o The input vector x just concatenates v(w) for each of the k words:
o

Neural LMs

o The input x is fed into a neural network with 1 or more hidden layers:
o

Training

o The training examples are simply word k-grams from the corpus
o The identities of the first k+1 words are used as features, and the last

word is used as the target label for the classification.
o Conceptually, the model is trained using cross-entropy loss.

Advantages of NN LMs

o Better results. They achieve better preplexity scores than SOTA n-
gram LMs.

o Larger N. NN LMs can scale to much larger orders of n. This is
achievable because parameters are associated only with individual
words, and not with n-grams.

o They generalize across contexts. For example, by observing that
the words blue, green, red, black, etc. appear in similar contexts, the
model will be able to assign a reasonable score to the green car even
though it never observed in training, because it did observe blue car
and red car.

o A by-product of training are word embeddings

Language Modeling

o Goal: Learn a function that returns the joint probability
o Primary difficulty:

1. There are too many parameters to accurately estimate. This is
sometimes called the “curse of dimensionality”

2. In n-gram-based models we fail to generalize to related words / word
sequences that we have observed.

Curse of dimensionality / sparse
statistics
o Suppose we want a joint distribution over 10 words.

Suppose we have a vocabulary of size 100,000.
o 100,00010 =1050 parameters

o This is too high to estimate from data.

Chain rule

o In LMs we user chain rule to get the conditional probability of the next
word in the sequence given all of the previous words:

o 𝑃𝑃(𝑤𝑤1𝑤𝑤2𝑤𝑤3…𝑤𝑤𝑡𝑡) = ∏𝑡𝑡=1
𝑇𝑇 𝑃𝑃(𝑤𝑤𝑡𝑡|𝑤𝑤1…𝑤𝑤𝑡𝑡−1)

o What assumption do we make in n-gram LMs to simplify this?
o The probability of the next word only depends on the previous n-1 words.
o A small n makes it easier for us to get an estimate of the probability from

data.

Probability tables

o We construct tables to look up the
probability of seeing a word given a history.

o The tables only store observed sequences.
o What happens when we have a new (unseen)

combination of n words?

curse of P(wt | wt-n … wt-1)

dimensionality

azure

knowledge

oak

Unseen sequences

o What happens when we have a new (unseen) combination of n
words?

1. Back-off
2. Smoothing / interpolation
o We are basically just stitching together short sequences of observed

words.

Alternate idea
o Let’s try generalizing.
o Intuition: Take a sentence like

o The cat is walking in the bedroom

o And use it when we assign probabilities to similar sentences like

o The dog is running around the room

A Neural Probabilistic LM

1. Use a vector space model where the words are vectors with real
values ℝm. m=30, 60, 100. This gives a way to compute word
similarity.

2. Define a function that returns a joint probability of words in a
sequence based on a sequence of these vectors.

3. Simultaneously learn the word representations and the probability
function from data.

o Seeing one of the cat/dog sentences allows them to increase the
probability for that sentence and its combinatorial # of “neighbor”
sentences in vector space.

Bengio et al NIPS 2003

A Neural Probabilistic LM

o Given:
A training set w1 … wt where wt ∈V

o Learn:
f(w1 … wt) = P(wt|w1 … wt-1)
Subject to giving a high probability to an unseen text/dev set (e.g. minimizing
the perplexity)

o Constraint:
Create a proper probability distribution (e.g. sums to 1) so that we can take
the product of conditional probabilities to get the joint probability of a
sentence

A Neural Probabilistic LM

1. Create a mapping function C from any word in V onto ℝM. Store this
in a V-by-M matrix. Initialize it with singular value decomposition
(SVD).

2. The neural architecture: a function g maps sequence of word vectors
onto a probability distribution over the vocabulary V

o g(C(wt-n) … C(wt-1)) = P(wt|wt-n … wt-1)

Word embeddings
o When the ~50 dimensional vectors that result from training a neural

LM are projected down to 2-dimensions, we see a lot of words that
are intuitively similar to each other are close together.

Current state of the art neural LMs

o ELMo
o GPT
o BERT
o GPT-2

https://allennlp.org/elmo
https://blog.openai.com/language-unsupervised/
https://arxiv.org/pdf/1810.04805.pdf
https://blog.openai.com/better-language-models/

	Neural Networks and Neural LMs
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Review: Feed-Forward Neural Network
	Training Neural Nets
	Cross-Entropy Loss
	Cross-Entropy Loss
	Computing the gradient
	Computation Graphs
	Forward pass
	Backward differentiation
	Chain rule
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Backward pass
	Computation Graph for a NN
	Neural Language Models
	Language Models
	Neural Language Models
	Neural LMs (Bengio et al 2003)
	Neural LMs
	Neural LMs
	Slide Number 28
	Training
	Advantages of NN LMs
	Language Modeling
	Curse of dimensionality / sparse statistics
	Chain rule
	Probability tables
	Unseen sequences
	Alternate idea
	A Neural Probabilistic LM
	A Neural Probabilistic LM
	A Neural Probabilistic LM
	Slide Number 41
	Word embeddings
	Current state of the art neural LMs

