R,

ARTIFICIAL INTELLIGENCE

\ L
N SiE
LN | =
T O~
N an
O

Perceptrons

Perceptrons

o Perceptrons were developed in
the 1950s and 1960s loosely
inspired by the neuron.

I

T output

Axonal arborization

Axon from another cell

Synapse
Dendrite

Nucleus

\/

Synapses

Cell body or Soma

|

Eléctronic ‘Brain’ Teaches Itse]f

The Navy last week demonstrated
the embryo of an electronic com-
puter named the Percaeptron which,
when completed in about a year, is
expected to be the first non-living
mechanism able to “perceive, recog-
nize and {dentify its surroundings
without human training or control.”
Navy officers demonstrating a pre-
liminary form of the device in
Washington said they hesitated to
call it a machine because it is so
much like a “human being without
life.”

Dr. Frank Rosenblatt, research
psychologist at the Cornell Aero-
nautical Laboratory, Inc., Buffalo,
N. Y., designer of the Perceptron.
conducted the demonstration, Th=
machine, he said, would be the first
electronic device to think as the
human brain. Like humans, Per-
ceptron will make mistakes at first,
“but it will grow wiser as it gains
experience,” he said.

The first Perceptron, to cost about
£100,000, will have about 1,000 elec-
tronie “association cells" receiving
electrical impulses from an eyelike
scanning device with 400 photocells.
The human brain has ten billion
responsive cells, including 100,000,-

: : 000 connections with the eye.
@ Penn Engineering Difference Recognized

recognize the difference between
right and left, almost the way a
child learns.

When fully developed, the Per-
ceptron will be designed to remem-
ber images and information it has
perceived itself, whereas ordinary
computers remember only what is
fed into them on punch cards ov
magnetic tape.

Later Perceptrons, Dr Rosenblatt
sald, will be able to recognize ped-
ple and call out their names. Printed
pages, longhand letters and even
speech commands are within its
reach. Only one more step of devel-
opment, a difficult step, he said, is
needed for the device to hear speech
in one language and instantly
translate it to speech or writing in
another language.

Self-Reproduction

In principle, Dr. Rosenblatt said,
it would be possible to build Per-
ceptrons that could reproduce them-
selves on an assembly line and
which would be “conscious” of theflr
existence, .

Perceptron, it was pointed out,
needs no “priming.” It is not nee-.
essary to introduce it to surround-
ings and circumstances, record the -
data involved and then store them

| far future comparison as is the case

Neuron

Dendrite
Axon terminal

Soma

Qbo"

Schwann cell

Axon

Nucleus

‘& Penn Engineering

Perceptron

Inputs Weights
X
f Weighted
Sum Activation
Function
X2
Output
X3
Threshold
Xn

&

» Penn Engineering
S S

0 if Z wjx; < threshold
j

Perceptron PN 1Y > sl

Inputs Weights
X
f Weighted
Sum Activation
Function
X2
Output
X3
Threshold
Xn

&

» Penn Engineering
S S

Perceptrons for decision making

o We can think about the perceptron or the sigmoid neuron as a device
that makes decisions by weighing up evidence.

o Example: Suppose there's a cheese festival in your town. You like
cheese.

I

T output

Example from Michael Nielsen’s book Neural Networks and Deep Learning

‘& Penn Engineering

http://neuralnetworksanddeeplearning.com/chap1.html

Perceptrons for decision making

o You might use 3 factors to decide whether to go.
1. Is the weather good?
2. Can your loyal companion come with you?
3. Is the festival near public transit?
o These can be the binary input values to a perceptron

a2 i)

‘& Penn Engineering

Perceptrons for decision making

o By varying weights and the threshold we get different models of
decision making

o Example 1:w,=6 w,=2 w;=2, threshold=5
o Example 2: w,=6 w,=2 w;=2, threshold =3

output

‘& Penn Engineering

Notational changes

o Change 1: We can write), ; wjx; as a dot product of the input vector and the
weight vector:

o LiWiXj=EW-X

o Change 2: We can move the threshold to other other side of the inequality.
We define a perceptron’s “bias” as the -1 * its threshold:

b = —threshold
Oifw-x+b <0

1 ifz wjx; > threshold rewrites to output = {1 ifw:-x+b >0
J

@ Penn Engineering

0 if Z Wixj < threshold ©
output = J

Learning weights from examples

o Perceptions can be used for all kinds of classification problems.
o Think of the inputs as features representing something we want to classify.

o The feature values for inputs are fixed, but we can choose different weight vectors. Depending on the
weight vector that we pick, we will get a different classifier.

- N
free : 2
e N
YOUR NAME : O
§ free a4 | W MISSPELLED : 2
YOUR NAME — :-1 f(xl) FROM_FRIEND : 0
MISSPELLED : 1 B
FROM FRIEND :-3 - y
. J
- N
f(mQ) # free 0
YOUR NAME 1
MISSPELLED 1
FROM FRIEND : 1
~ J

EgﬁP%ﬂnnEk§§neerhgg

Binary Decision Rule

> In the space of feature vectors
Examples are points
Any weight vector is a hyperplane
One side corresponds to Y=+1
Other corresponds to Y=-1

w +1 = SPAM

BIAS : -3
free : 4
money : 2

1=HAM q
0 1 free

f-w=20

@ Penn Eng]'neering

Weight Updates

o0
=
L
=

Penn E

e

Learning: Binary Perceptron

o Start with weights =0

o For each training instance:
Classify with current weights

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

@ Penn Engineering

Learning a Binary Perceptron

o Start with weights =0

o For each training instance:
Classify with current weights

_[+1ifw-f(x) <0
YT 1=1ifw-f(x) >0

w

If correct (i.e., y=y*), no change!

If wrong: adjust the weight
vector by adding or subtracting
the feature vector. Subtract if
y*is-1.

w=w+y -f

@ Penn Engineering

Multiclass Decision Rule

o If we have multiple classes:

- A weight vector for each
class:

Wy

w1y - f biggest

= Score (activation) of a class
Y w1

wy'f(iU)

. . . w3
- Prediction highest score e
wins f w3 - f
. w2 . .
y = argmax wy - f(x) biggest Plogest

Binary = multiclass where the negative class has weight zero

@ Penn Engineering

Learning: Multiclass Perceptron

o Start with all weights =0

o Pick up training examples one by
one

o Predict with current weights
y = argmax, wy- f(x)
wy = wy — f(x)

o If correct, no change!

o If wrong: lower score of wrong
answer, raise score of right answer

Example: Multiclass Perceptron

“win the vote”

“win the election”

“win the game”

WSPORTS WpOLITICS WTECH
BIAS 1 BIAS : 0 BIAS : 0
win : 0 win : 0 win : 0
game : O game : 0 game : 0
vote 0 vote 0 vote 0
the 0 the : 0 the : 0

@ Penn Engineering

Properties of Perceptrons

Separable
o Separability: true if some parameters get the
training set perfectly correct + 4
-\ + .
_ +
o Convergence: if the training is separable, T *

perceptron will eventually converge (binary case)

o Mistake Bound: the maximum number of mistakes

(binary case) related to the margin or degree of +
separability k -\ 4 T
mistakes < 2 _ * -
- +

‘& Penn Engineering

Examples: Perceptron

o Non-Separable Case

a5

Bt

G |

N3

ul;

WEH

Penn Engineering

Improving the Perceptron

@ Penn Eng]'neering

Problems with the Perceptron

o Noise: if the data isn't separable,
weights might thrash
. Averagin%wei ht vectors over

time can help (averaged
perceptron)

o Mediocre generalization: finds a
barely” separating solution

training
o Overtraining: test / held-out >
accuracy usually rises, then falls ©
- Overtraining is a kind of o test
overfitting O neld-out

‘& Penn Engineering

Fixing the Perceptron

o ldea: adjust the weight update to mitigate these
effects

o MIRA = Margin Infused Relaxed Algorithm

o Choose an update size that fixes the current
mistake... W
y

o ... but, minimizes the change tow W

Yy

T Guessed y instead of y* on

2f y f example x with features f(iU)

- /
The +1 helps to generalize wy - wy o Tf(ﬂ?)

e = w4 ()

Wy

Maximum Step Size

o In practice, it's also bad to make updates that are too large
- Example may be labeled incorrectly

- You may not have enough features Wy - f
- Solution: cap the maximum possible value of t with >
some constant C .
w —w) f+1
75 = min Coy Y : , C
2f - f
L_./

- Corresponds to an optimization that assumes non- «
separable data O 7 C

- Usually converges faster than perceptron
- Usually better, especially on noisy data

‘& Penn Engineering

Linear Separators

o
c
=

O
o
W
Vg
| -
e
+—J
(40)
| -
qv]

oR
()
(Vg
| -
(q0)
()
S
()
(Vg
()
C
+—J
Y4—
O
O
e
M
O

-~

.

o0
=
:
()
2

& Penn E

Support Vector Machines

o Maximizing the margin: good according to intuition, theory,

practice
o Only support vectors matter; other training examples are
ignorable
o Support vector machines (SVMs) find the sehj)arator with max
margin .
o | Basically, SVMs are MIRA where you optimize ove_. 1 /2
min —||w — w'||
at ongg w2
° % * wyx - f(x;) > wy - f(z;) + 1
@
o. 7 ° o SVM
@
1
o o o min §||w||2
[]
° ‘ Vi, y wys - f(x5) > wy - f(x;) + 1

@ Penn Engineering

Non-Linear Separators

o Data that s linearly separable works out great for linear decision

rules: |
o o .0 (o» o .

o Butwhat are we going to do if the dataset is just too hard?

e o o0 o0 O o0 @
0 X

o How about... mapping data to.a higher-dimensional space:

@ Penn Engineering

Non-Linear Separators

o General idea: the original feature space can always be mapped to some
higher-dimensional feature space where the training set is separable:

@ Penn Eng]'neering

Classification: Comparison

- Nalve Bayes
Builds a model training data
Gives prediction probabilities
Strong assumptions about feature independence
One pass through data (counting)

o Perceptrons / MIRA:
Makes less assumptions about data
Mistake-driven learning
Multiple passes through data (prediction)
Often more accurate

@ Penn Engineering

Perceptrons for decision making

= A complex network of perceptrons could make quite subtle
decisions:

mputs output

Complex decisions can be made
by the perceptron in the third layer

Layer 1

. Layer 2
1st layer makes 3 simple o
decisions 2nd layer makes a decision by
by weighing the input evidence weighing up the results from the

1st layer of decision-making

‘& Penn Engineering

Weights, bias and dot products

" Two notational changes simplify the way that perceptrons are
described.

= The first change is to replace the weighted sum as a dot product
WX =)WiK
* The second change is to move the threshold to the other side of
the inequality, and to replace it by a bias, b=-threshold

0 if Z wx; < threshold
j 0 ifw-x+b <0

output = ifw-x4+b >0

1 if z wix; > threshold
j

Penn Engineering

Logical functions

o Networks of perceptrons to compute any logical function
o We can build any computation up out of NAND gates.
o For example, a circuit which adds two bits x;, and x,

I

sum: ary P as

4
» carry bit: xqiaxo

All unlabeled weights are -2, all biases =3.

T
D}—« } sum: xrp B @
aIe
} carry bit: xix2 2

@ Penn Engineering

The XOR problem

o A single neural unit cannot be used to compute the XOR function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

‘& Penn Engineering

The XOR Problem

.

.ngmeermg

Penn E

.

C
O
=
=
O
W
ad
O
>
V
C
_I

o0
=
w
()
>

'Penn E

-

Y

The XOR Solution

Xl‘ hl‘
1 @ O 1 O
-
-
-
-
-
-
-
- -
0 O . .X 0 O 4 — . >
0 - h
0 1 0 1 2 0
a) The original x space b) The new & space

‘& Penn Engineering

Activation Functions

o Instead of directly outputting z = w-x+b, which is a linear function of x, neuron units apply a non-linear
function fto z

o The output of this function is called the activation value for the unit, represented by the variable a.
The output of a neural network is called y, so if the activation of a node is the final output of a network

then
o y=0=f(z)

o There are 3 commonly used non-linear functions used for f:
The sigmoid function 10
The tanh function
The rectified linear unit ReLU 0.8

.

0.4

0.2

0.05 —= = =3 0 2 4 & 8

Z
The sigmoid function

@ Penn Eng]'neering

Activation Functions

1.0 1.0
0.e 0.5
g Y=1/(1+€7) X
Y & 0.0
0.4 Il
>
-0.5
0.2
The sigmoid function tanh
0.07% -y -1 3 %] F &] —-1.015 -5 0 5 10
10
5
)
&
20
g
[
=
-5
RelLU

‘& Penn Engineering

	Perceptrons
	Perceptrons
	Neuron
	Perceptron
	Perceptron
	Perceptrons for decision making
	Perceptrons for decision making
	Perceptrons for decision making
	Notational changes
	Learning weights from examples
	Binary Decision Rule
	Weight Updates
	Learning: Binary Perceptron
	Learning a Binary Perceptron
	Multiclass Decision Rule
	Learning: Multiclass Perceptron
	Example: Multiclass Perceptron
	Properties of Perceptrons
	Examples: Perceptron
	Improving the Perceptron
	Problems with the Perceptron
	Fixing the Perceptron
	Maximum Step Size
	Linear Separators
	Support Vector Machines
	Non-Linear Separators
	Non-Linear Separators
	Classification: Comparison
	Perceptrons for decision making
	Weights, bias and dot products
	Logical functions
	The XOR problem
	The XOR Problem
	The XOR Solution
	The XOR Solution
	Activation Functions
	Activation Functions

