
CIS 421/521:
ARTIFICIAL INTELLIGENCE
CIS 421/521:
ARTIFICIAL INTELLIGENCE

Perceptrons

Perceptrons
o Perceptrons were developed in

the 1950s and 1960s loosely
inspired by the neuron.

Neuron
Dendrite

Axon

Axon terminal

Node of
Ranvier

Nucleus

Schwann cell

Soma

Perceptron
WeightsInputs

x1
w1

x2
w2

x3
w3

xn
wn

…

Σ wi * xi ᵠ

Activation
Function

Weighted
Sum

Threshold

Output

Perceptron
WeightsInputs

x1
w1

x2
w2

x3
w3

xn
wn

…

Σ wi * xi ᵠ

Activation
Function

Weighted
Sum

Threshold

Output

output =
0 if �

𝑗𝑗
𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 ≤ threshold

1 if�
𝑗𝑗
𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 > threshold

Perceptrons for decision making

o We can think about the perceptron or the sigmoid neuron as a device
that makes decisions by weighing up evidence.

o Example: Suppose there’s a cheese festival in your town. You like
cheese.

Example from Michael Nielsen’s book Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com/chap1.html

Perceptrons for decision making

o You might use 3 factors to decide whether to go.
1. Is the weather good?
2. Can your loyal companion come with you?
3. Is the festival near public transit?
o These can be the binary input values to a perceptron

Perceptrons for decision making

o By varying weights and the threshold we get different models of
decision making

o Example 1: w1= 6 w2 = 2 w3 = 2, threshold = 5
o Example 2: w1= 6 w2 = 2 w3 = 2, threshold = 3

Notational changes

o Change 1: We can write ∑𝑗𝑗 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 as a dot product of the input vector and the
weight vector:

o ∑𝑗𝑗 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 ≡ 𝒘𝒘 � 𝒙𝒙

o Change 2: We can move the threshold to other other side of the inequality.
We define a perceptron’s “bias” as the -1 * its threshold:

o 𝑏𝑏 ≡ −threshold
output =

0 if �
𝑗𝑗
𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 ≤ threshold

1 if�
𝑗𝑗
𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 > threshold

output = �0 if 𝒘𝒘 � 𝒙𝒙 + 𝑏𝑏 ≤ 0
1 if 𝒘𝒘 � 𝒙𝒙 + 𝑏𝑏 > 0rewrites to

Learning weights from examples
o Perceptions can be used for all kinds of classification problems.

o Think of the inputs as features representing something we want to classify.

o The feature values for inputs are fixed, but we can choose different weight vectors. Depending on the
weight vector that we pick, we will get a different classifier.

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Binary Decision Rule
o In the space of feature vectors

▪ Examples are points
▪ Any weight vector is a hyperplane
▪ One side corresponds to Y=+1
▪ Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
...

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron
o Start with weights = 0
o For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector

Learning a Binary Perceptron
o Start with weights = 0
o For each training instance:

▪ Classify with current weights

▪ y = �
+1 if 𝒘𝒘 � 𝒇𝒇(𝒙𝒙) ≤ 0
−1 if 𝒘𝒘 � 𝒇𝒇 𝒙𝒙 > 0

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight

vector by adding or subtracting
the feature vector. Subtract if
y* is -1.

▪ 𝒘𝒘 = 𝒘𝒘 + 𝒚𝒚∗ � 𝒇𝒇

Multiclass Decision Rule
o If we have multiple classes:

▪ A weight vector for each
class:

▪ Score (activation) of a class
y:

▪ Prediction highest score
wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron
o Start with all weights = 0
o Pick up training examples one by

one
o Predict with current weights

o If correct, no change!
o If wrong: lower score of wrong

answer, raise score of right answer

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

Properties of Perceptrons
o Separability: true if some parameters get the

training set perfectly correct

o Convergence: if the training is separable,
perceptron will eventually converge (binary case)

o Mistake Bound: the maximum number of mistakes
(binary case) related to the margin or degree of
separability

Separable

Non-Separable

Examples: Perceptron
o Non-Separable Case

Improving the Perceptron

Problems with the Perceptron
o Noise: if the data isn’t separable,

weights might thrash
▪ Averaging weight vectors over

time can help (averaged
perceptron)

o Mediocre generalization: finds a
“barely” separating solution

o Overtraining: test / held-out
accuracy usually rises, then falls
▪ Overtraining is a kind of

overfitting

Fixing the Perceptron
o Idea: adjust the weight update to mitigate these

effects

o MIRA = Margin Infused Relaxed Algorithm

o Choose an update size that fixes the current
mistake…

o … but, minimizes the change to w

The +1 helps to generalize

Maximum Step Size
o In practice, it’s also bad to make updates that are too large

▪ Example may be labeled incorrectly
▪ You may not have enough features
▪ Solution: cap the maximum possible value of τ with

some constant C

▪ Corresponds to an optimization that assumes non-
separable data

▪ Usually converges faster than perceptron
▪ Usually better, especially on noisy data

Linear Separators
o Which of these linear separators is optimal?

Support Vector Machines
o Maximizing the margin: good according to intuition, theory,

practice
o Only support vectors matter; other training examples are

ignorable
o Support vector machines (SVMs) find the separator with max

margin
o Basically, SVMs are MIRA where you optimize over all examples

at once

MIRA

SVM

Non-Linear Separators
o Data that is linearly separable works out great for linear decision

rules:

o But what are we going to do if the dataset is just too hard?

o How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

Non-Linear Separators
o General idea: the original feature space can always be mapped to some

higher-dimensional feature space where the training set is separable:

Φ: x→ φ(x)

Classification: Comparison

o Naïve Bayes
▪ Builds a model training data
▪ Gives prediction probabilities
▪ Strong assumptions about feature independence
▪ One pass through data (counting)

o Perceptrons / MIRA:
▪ Makes less assumptions about data
▪ Mistake-driven learning
▪ Multiple passes through data (prediction)
▪ Often more accurate

 A complex network of perceptrons could make quite subtle
decisions:

Perceptrons for decision making

Layer 1
Layer 2

Layer 3

1st layer makes 3 simple
decisions

by weighing the input evidence
2nd layer makes a decision by

weighing up the results from the
1st layer of decision-making

Complex decisions can be made
by the perceptron in the third layer

 Two notational changes simplify the way that perceptrons are
described.

 The first change is to replace the weighted sum as a dot product

 The second change is to move the threshold to the other side of
the inequality, and to replace it by a bias, b≡−threshold

Weights, bias and dot products

output =
0 if �

j
wjxj ≤ threshold

1 if�
j
wjxj > threshold

output = �0 if w � 𝑥𝑥 + 𝑏𝑏 ≤ 0
1 if w � 𝑥𝑥 + 𝑏𝑏 > 0

Logical functions

o Networks of perceptrons to compute any logical function
o We can build any computation up out of NAND gates.
o For example, a circuit which adds two bits x1 and x2

All unlabeled weights are -2, all biases =3.

The XOR problem

o A single neural unit cannot be used to compute the XOR function

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

AND

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

OR XOR

The XOR Problem

The XOR Solution

The XOR Solution

Activation Functions

o Instead of directly outputting z = w·x+b, which is a linear function of x, neuron units apply a non-linear
function f to z.

o The output of this function is called the activation value for the unit, represented by the variable a.
The output of a neural network is called y, so if the activation of a node is the final output of a network
then

o y=a= f(z)

o There are 3 commonly used non-linear functions used for f:
The sigmoid function
The tanh function
The rectified linear unit ReLU

The sigmoid function

Activation Functions

The sigmoid function tanh

ReLU

	Perceptrons
	Perceptrons
	Neuron
	Perceptron
	Perceptron
	Perceptrons for decision making
	Perceptrons for decision making
	Perceptrons for decision making
	Notational changes
	Learning weights from examples
	Binary Decision Rule
	Weight Updates
	Learning: Binary Perceptron
	Learning a Binary Perceptron
	Multiclass Decision Rule
	Learning: Multiclass Perceptron
	Example: Multiclass Perceptron
	Properties of Perceptrons
	Examples: Perceptron
	Improving the Perceptron
	Problems with the Perceptron
	Fixing the Perceptron
	Maximum Step Size
	Linear Separators
	Support Vector Machines
	Non-Linear Separators
	Non-Linear Separators
	Classification: Comparison
	Perceptrons for decision making
	Weights, bias and dot products
	Logical functions
	The XOR problem
	The XOR Problem
	The XOR Solution
	The XOR Solution
	Activation Functions
	Activation Functions

