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Perceptrons



Perceptrons
o Perceptrons were developed in 

the 1950s and 1960s loosely 
inspired by the neuron. 
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Perceptrons for decision making

o We can think about the perceptron or the sigmoid neuron as a device 
that makes decisions by weighing up evidence.

o Example: Suppose there’s a cheese festival in your town.  You like 
cheese.

Example from Michael Nielsen’s book Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com/chap1.html


Perceptrons for decision making

o You might use 3 factors to decide whether to go.
1. Is the weather good?
2. Can your loyal companion come with you?
3. Is the festival near public transit?
o These can be the binary input values to a perceptron  



Perceptrons for decision making

o By varying weights and the threshold we get different models of 
decision making 

o Example 1: w1= 6   w2 = 2   w3 = 2,  threshold = 5
o Example 2: w1= 6   w2 = 2   w3 = 2,  threshold = 3



Notational changes

o Change 1: We can write ∑𝑗𝑗 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 as a dot product of the input vector and the 
weight vector:

o ∑𝑗𝑗 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 ≡ 𝒘𝒘 � 𝒙𝒙

o Change 2:  We can move the threshold to other other side of the inequality.  
We define a perceptron’s “bias” as the -1 * its threshold:

o 𝑏𝑏 ≡ −threshold
output =

0 if �
𝑗𝑗
𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 ≤ threshold

1 if�
𝑗𝑗
𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 > threshold

output = �0 if 𝒘𝒘 � 𝒙𝒙 + 𝑏𝑏 ≤ 0
1 if 𝒘𝒘 � 𝒙𝒙 + 𝑏𝑏 > 0rewrites to



Learning weights from examples
o Perceptions can be used for all kinds of classification problems.

o Think of the inputs as features representing something we want to classify.  

o The feature values for inputs are fixed, but we can choose different weight vectors. Depending on the 
weight vector that we pick, we will get a different classifier.  

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...



Binary Decision Rule
o In the space of feature vectors

▪ Examples are points
▪ Any weight vector is a hyperplane
▪ One side corresponds to Y=+1
▪ Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
...
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+1 = SPAM

-1 = HAM



Weight Updates



Learning: Binary Perceptron
o Start with weights = 0
o For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector



Learning a Binary Perceptron
o Start with weights = 0
o For each training instance:

▪ Classify with current weights

▪ y = �
+1 if 𝒘𝒘 � 𝒇𝒇(𝒙𝒙) ≤ 0
−1 if 𝒘𝒘 � 𝒇𝒇 𝒙𝒙 > 0

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight 

vector by adding or subtracting 
the feature vector. Subtract if 
y* is -1.

▪ 𝒘𝒘 = 𝒘𝒘 + 𝒚𝒚∗ � 𝒇𝒇



Multiclass Decision Rule
o If we have multiple classes:

▪ A weight vector for each 
class:

▪ Score (activation) of a class 
y:

▪ Prediction highest score 
wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron
o Start with all weights = 0
o Pick up training examples one by 

one
o Predict with current weights

o If correct, no change!
o If wrong: lower score of wrong 

answer, raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1
win   : 0
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0  
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0 
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

“win the vote”

“win the election”

“win the game”



Properties of Perceptrons
o Separability: true if some parameters get the 

training set perfectly correct

o Convergence: if the training is separable, 
perceptron will eventually converge (binary case)

o Mistake Bound: the maximum number of mistakes 
(binary case) related to the margin or degree of 
separability

Separable

Non-Separable



Examples: Perceptron
o Non-Separable Case



Improving the Perceptron



Problems with the Perceptron
o Noise: if the data isn’t separable, 

weights might thrash
▪ Averaging weight vectors over 

time can help (averaged 
perceptron)

o Mediocre generalization: finds a 
“barely” separating solution

o Overtraining: test / held-out 
accuracy usually rises, then falls
▪ Overtraining is a kind of 

overfitting



Fixing the Perceptron
o Idea: adjust the weight update to mitigate these 

effects

o MIRA = Margin Infused Relaxed Algorithm

o Choose an update size that fixes the current 
mistake…

o … but, minimizes the change to w

The +1 helps to generalize



Maximum Step Size
o In practice, it’s also bad to make updates that are too large

▪ Example may be labeled incorrectly
▪ You may not have enough features
▪ Solution: cap the maximum possible value of τ with 

some constant C

▪ Corresponds to an optimization that assumes non-
separable data

▪ Usually converges faster than perceptron
▪ Usually better, especially on noisy data



Linear Separators
o Which of these linear separators is optimal? 



Support Vector Machines
o Maximizing the margin: good according to intuition, theory, 

practice
o Only support vectors matter; other training examples are 

ignorable 
o Support vector machines (SVMs) find the separator with max 

margin
o Basically, SVMs are MIRA where you optimize over all examples 

at once

MIRA

SVM



Non-Linear Separators
o Data that is linearly separable works out great for linear decision 

rules:

o But what are we going to do if the dataset is just too hard? 

o How about… mapping data to a higher-dimensional space:

0
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This and next few slides adapted from Ray Mooney, UT



Non-Linear Separators
o General idea: the original feature space can always be mapped to some 

higher-dimensional feature space where the training set is separable:

Φ:  x→ φ(x)



Classification: Comparison

o Naïve Bayes
▪ Builds a model training data
▪ Gives prediction probabilities
▪ Strong assumptions about feature independence
▪ One pass through data (counting)

o Perceptrons / MIRA:
▪ Makes less assumptions about data
▪ Mistake-driven learning
▪ Multiple passes through data (prediction)
▪ Often more accurate



 A complex network of perceptrons could make quite subtle 
decisions:

Perceptrons for decision making

Layer 1
Layer 2

Layer 3

1st layer makes 3 simple 
decisions

by weighing the input evidence
2nd layer makes a decision by 

weighing up the results from the 
1st layer of decision-making

Complex decisions can be made 
by the perceptron in the third layer



 Two notational changes simplify the way that perceptrons are 
described. 

 The first change is to replace the weighted sum as a dot product

 The second change is to move the threshold to the other side of 
the inequality, and to replace it by a bias, b≡−threshold

Weights, bias and dot products

output =
0 if �

j
wjxj ≤ threshold

1 if�
j
wjxj > threshold

output = �0 if w � 𝑥𝑥 + 𝑏𝑏 ≤ 0
1 if w � 𝑥𝑥 + 𝑏𝑏 > 0



Logical functions

o Networks of perceptrons to compute any logical function
o We can build any computation up out of NAND gates.  
o For example, a circuit which adds two bits x1 and x2

All unlabeled weights are -2, all biases =3.



The XOR problem

o A single neural unit cannot be used to compute the XOR function

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

AND

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

OR XOR



The XOR Problem



The XOR Solution



The XOR Solution



Activation Functions

o Instead of directly outputting z = w·x+b, which is a linear function of x, neuron units apply a non-linear 
function f to z.

o The output of this function is called the activation value for the unit, represented by the variable a.  
The output of a neural network is called y, so if  the activation of a node is the final output of a network
then

o y=a= f(z) 

o There are 3 commonly used non-linear functions used for f:
The sigmoid function
The tanh function
The rectified linear unit ReLU

The sigmoid function



Activation Functions

The sigmoid function tanh

ReLU
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