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Naïve Bayes and Perceptrons

Read AIMA  Chapter 19.1-19.6



Machine Learning

 Up until now: how use a model to make optimal decisions

 Machine learning: how to acquire a model from data / experience
 Learning parameters (e.g. probabilities)
 Learning structure (e.g. BN graphs)
 Learning hidden concepts (e.g. clustering)

 Today: model-based classification with Naive Bayes and 
Perceptrons



Spam Classification

 Input: an email
 Output: spam/ham

 Setup:
 Get a large collection of example emails, each labeled 

“spam” or “ham”
 Note: someone has to hand label all this data!
 Want to learn to predict labels of new, future emails

 Features: The attributes used to make the ham / 
spam decision
 Words: FREE!
 Text Patterns: $dd, CAPS
 Non-text: SenderInContacts
 …

Dear Sir.

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, 
but when I plugged it in, hit the power 
nothing happened.



Digit Recognition

 Input: images / pixel grids
 Output: a digit 0-9

 Setup:
 Get a large collection of example images, each labeled with a digit
 Note: someone has to hand label all this data!
 Want to learn to predict labels of new, future digit images

 Features: The attributes used to make the digit decision
 Pixels: (6,8)=ON
 Shape Patterns: NumComponents, AspectRatio, NumLoops
 …
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Review Other Classification Tasks

 Classification: given inputs x, predict labels y

 Examples:
 Spam detection (input: document,

classes: spam / ham)
 OCR (input: images, classes: characters)
 Medical diagnosis (input: symptoms,

classes: diseases)
 Automatic essay grading (input: document,

classes: grades)
 Fraud detection (input: account activity,

classes: fraud / no fraud)
 Customer service email routing
 … many more

 Classification is an important commercial technology!



Model-Based Classification

 Model-based approach
 Build a model (e.g. Bayes’ net) where 

both the label and features are 
random variables

 Instantiate any observed features
 Query for the distribution of the label 

conditioned on the features

 Challenges
 What structure should the BN have?
 How should we learn its parameters?



Naïve Bayes for Digits

 Naïve Bayes: Assume all features are independent effects of the label

 Simple digit recognition version:
 One feature (variable) Fij for each grid position <i,j>
 Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
 Each input maps to a feature vector, e.g.

 Here: lots of features, each is binary valued

 Naïve Bayes model:

 What do we need to learn?

Y

F1 FnF2



General Naïve Bayes

 A general Naive Bayes model:

 We only have to specify how each feature depends on the class
 Total number of parameters is linear in number of features
 Model is very simplistic, but often works anyway

Y

F1 FnF2

|Y| labels

n x |F| x |Y| 
parameters

|Y| x |F|n values



Inference for Naïve Bayes

 Goal: compute posterior distribution over label variable Y
 Step 1: get joint probability of label and evidence for each label

 Step 2: sum to get probability of evidence

 Step 3: normalize by dividing Step 1 by Step 2

+



General Naïve Bayes

 What do we need in order to use Naïve Bayes?

 Inference method (we just saw this part)
 Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
 Use standard inference to compute P(Y|F1…Fn)
 Nothing new here

 Estimates of local conditional probability tables
 P(Y), the prior over labels
 P(Fi|Y) for each feature (evidence variable)
 These probabilities are collectively called the parameters of the model 

and denoted by θ
 Up until now, we assumed these appeared by magic, but…
 …they typically come from training data counts: we’ll look at this soon



Example: Conditional Probabilities

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80



Naïve Bayes for Text

 Bag-of-words Naïve Bayes:
 Features: Wi is the word at positon i
 As before: predict label conditioned on feature variables (spam vs. ham)
 As before: assume features are conditionally independent given label
 New: each Wi is identically distributed

 Generative model:

 “Tied” distributions and bag-of-words
 Usually, each variable gets its own conditional probability distribution P(F|Y)
 In a bag-of-words model

 Each position is identically distributed
 All positions share the same conditional probs P(W|Y)
 Why make this assumption?

 Called “bag-of-words” because model is insensitive to word order or reordering

Word at position 
i, not ith word in 
the dictionary!



Example: Spam Filtering

 Model:

 What are the parameters?

 Where do these tables come from?

the :  0.0156
to  : 0.0153
and :  0.0115
of  : 0.0095
you :  0.0093
a   :  0.0086
with: 0.0080
from:  0.0075
...

the :  0.0210
to  : 0.0133
of  : 0.0119
2002:  0.0110
with: 0.0108
from:  0.0107
and :  0.0105
a   :  0.0100
...

ham : 0.66
spam: 0.33



Training and Testing



Important Concepts

 Data: labeled instances, e.g. emails marked spam/ham
 Training set
 Held out set
 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set
 (Tune hyperparameters on held-out set)
 Compute accuracy of test set
 Very important: never “peek” at the test set!

 Evaluation
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data
 Overfitting: fitting the training data very closely, but not 

generalizing well
 We’ll investigate overfitting and generalization formally in a few 

lectures

Training
Data

Held-Out
Data

Test
Data



Generalization and Overfitting
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Example: Overfitting

2 wins!!



Example: Overfitting

 Posteriors determined by relative probabilities (odds ratios):

south-west : inf
nation     : inf
morally    : inf
nicely     : inf
extent     : inf
seriously  : inf
...

What went wrong here?

screens    : inf
minute     : inf
guaranteed : inf
$205.00    : inf
delivery   : inf
signature  : inf
...



Generalization and Overfitting

 Relative frequency parameters will overfit the training data!
 Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
 Unlikely that every occurrence of “minute” is 100% spam
 Unlikely that every occurrence of “seriously” is 100% ham
 What about all the words that don’t occur in the training set at all?
 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only feature
 Would get the training data perfect (if deterministic labeling)
 Wouldn’t generalize at all
 Just making the bag-of-words assumption gives us some generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates



Parameter Estimation



Parameter Estimation

 Estimating the distribution of a random variable

 Elicitation: ask a human (why is this hard?)

 Empirically: use training data (learning!)
 E.g.: for each outcome x, look at the empirical rate of that value:

 This is the estimate that maximizes the likelihood of the data

r r b

r b b

r bb
rb b

r bb

r

b

b



Maximum Likelihood

 Relative frequencies are the maximum likelihood estimates



Unseen Events



Laplace Smoothing

 Laplace’s estimate:
 Pretend you saw every outcome 

once more than you actually did

 Can derive this estimate with 
Dirichlet priors

r r b



Laplace Smoothing

 Laplace’s estimate (extended):
 Pretend you saw every outcome k extra times

 What’s Laplace with k = 0?
 k is the strength of the prior

 Laplace for conditionals:
 Smooth each condition independently:

r r b



Estimation: Linear Interpolation* 

 In practice, Laplace often performs poorly for P(X|Y):
 When |X| is very large
 When |Y| is very large

 Another option: linear interpolation
 Also get the empirical P(X) from the data
 Make sure the estimate of P(X|Y) isn’t too different from the empirical P(X)

 What if α is 0?  1?

 For even better ways to estimate parameters, take CIS 530 next 
semester.  



Real NB: Smoothing

 For real classification problems, smoothing is critical
 New odds ratios:

seems     : 10.8
group     : 10.2
ago       :  8.4
areas     :  8.3
...

Credit  : 28.4
ORDER   : 27.2
<FONT>  : 26.9
money   : 26.5
...

Do these make more sense?



Tuning



Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns
 Parameters: the probabilities P(X|Y), P(Y)
 Hyperparameters: e.g. the amount / type of 

smoothing to do, k, α

 What should we learn where?
 Learn parameters from training data
 Tune hyperparameters on different data

 Why?
 For each value of the hyperparameters, train 

and test on the held-out data
 Choose the best value and do a final test on 

the test data



Features



Errors, and What to Do

 Examples of errors

Dear GlobalSCAPE Customer, 

GlobalSCAPE has partnered with ScanSoft to offer you the 
latest version of OmniPage Pro, for just $99.99* - the regular 
list price is $499! The most common question we've received 
about this offer is - Is this genuine? We would like to assure 
you that this offer is authorized by ScanSoft, is genuine and 
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, 
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are 
there. We hope you enjoyed receiving this message. However, if 
you'd rather not receive future e-mails announcing new store 
launches, please click . . .



What to Do About Errors?

 Need more features– words aren’t enough!
 Have you emailed the sender before?
 Have 1K other people just gotten the same email?
 Is the sending information consistent? 
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Can add these information sources as new 
variables in the NB model

 Next class we’ll talk about classifiers which let 
you easily add arbitrary features more easily



Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures
 Help determine how hard the task is
 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set
 E.g. for spam filtering, might label everything as ham
 Accuracy might be very high if the problem is skewed
 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline



Confidences from a Classifier

 The confidence of a probabilistic classifier:
 Posterior over the top label

 Represents how sure the classifier is of the 
classification

 Any probabilistic model will have confidences
 No guarantee confidence is correct

 Calibration
 Weak calibration: higher confidences mean 

higher accuracy
 Strong calibration: confidence predicts accuracy 

rate
 What’s the value of calibration?



Summary

 Bayes rule lets us do diagnostic queries with causal probabilities

 The naïve Bayes assumption takes all features to be independent given the class label

 We can build classifiers out of a naïve Bayes model using training data

 Smoothing estimates is important in real systems

 Classifier confidences are useful, when you can get them



What to Do About Errors

 Problem: there’s still spam in your inbox

 Need more features – words aren’t enough!
 Have you emailed the sender before?
 Have 1M other people just gotten the same email?
 Is the sending information consistent? 
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Naïve Bayes models can incorporate a variety of features, but tend to do 
best in homogeneous cases (e.g. all features are word occurrences)
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Perceptrons

Optional Reading: Chapter 1
Of Nielsen’s “Neural Networks and 

Deep Learning”

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html


Some (Simplified) Biology

 Very loose inspiration: human neurons



Linear Classifiers

 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?



Feature Vectors

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”



Weights
 Binary case: compare features to a weight vector
 Learning: figure out the weight vector from examples

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Dot product            positive 
means the positive class



Decision Rules



Binary Decision Rule

 In the space of feature vectors
 Examples are points
 Any weight vector is a hyperplane
 One side corresponds to Y=+1
 Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Weight Updates



Learning: Binary Perceptron

 Start with weights = 0
 For each training instance:
 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector



Learning: Binary Perceptron

 Start with weights = 0
 For each training instance:
 Classify with current weights

 If correct (i.e., y=y*), no change!
 If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



3Blue1Brown

 Need a refresher on linear algebra topics like vector addition and 
matrix multiplication?
 I recommend the wonderful YouTube series by Grant Sanderson.  

His channel is called 3Blue1Brown.
 Grant gives intuitive visual tutorials to a ton of math concepts 
 Here is his “Essence of Linear Algebra” series:
 https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2x

VFitgF8hE_ab

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab


Examples: Perceptron

 Separable Case



Multiclass Decision Rule

 If we have multiple classes:
 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

 Start with all weights = 0
 Pick up training examples one by one
 Predict with current weights

 If correct, no change!
 If wrong: lower score of wrong answer, 

raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1
win   : 0
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0  
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0 
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

“win the vote”

“win the election”

“win the game”



Properties of Perceptrons

 Separability: true if some parameters get the training set 
perfectly correct

 Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

 Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



Examples: Perceptron

 Non-Separable Case



Improving the Perceptron



Problems with the Perceptron

 Noise: if the data isn’t separable, 
weights might thrash
 Averaging weight vectors over time 

can help (averaged perceptron)

 Mediocre generalization: finds a 
“barely” separating solution

 Overtraining: test / held-out 
accuracy usually rises, then falls
 Overtraining is a kind of overfitting



Fixing the Perceptron

 Idea: adjust the weight update to mitigate these effects

 MIRA*: choose an update size that fixes the current 
mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum Correcting Update

min not τ=0, or would not have 
made an error, so min will be 
where equality holds



Maximum Step Size

 In practice, it’s also bad to make updates that are too large
 Example may be labeled incorrectly
 You may not have enough features
 Solution: cap the maximum possible value of τ with some 

constant C

 Corresponds to an optimization that assumes non-separable data
 Usually converges faster than perceptron
 Usually better, especially on noisy data



Linear Separators

 Which of these linear separators is optimal? 



Support Vector Machines

 Maximizing the margin: good according to intuition, theory, practice
 Only support vectors matter; other training examples are ignorable 
 Support vector machines (SVMs) find the separator with max margin
 Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

SVM



Classification: Comparison

 Naïve Bayes
 Builds a model training data
 Gives prediction probabilities
 Strong assumptions about feature independence
 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data
 Mistake-driven learning
 Multiple passes through data (prediction)
 Often more accurate
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