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Naïve Bayes and Perceptrons

Read AIMA  Chapter 19.1-19.6



Machine Learning

 Up until now: how use a model to make optimal decisions

 Machine learning: how to acquire a model from data / experience
 Learning parameters (e.g. probabilities)
 Learning structure (e.g. BN graphs)
 Learning hidden concepts (e.g. clustering)

 Today: model-based classification with Naive Bayes and 
Perceptrons



Spam Classification

 Input: an email
 Output: spam/ham

 Setup:
 Get a large collection of example emails, each labeled 

“spam” or “ham”
 Note: someone has to hand label all this data!
 Want to learn to predict labels of new, future emails

 Features: The attributes used to make the ham / 
spam decision
 Words: FREE!
 Text Patterns: $dd, CAPS
 Non-text: SenderInContacts
 …

Dear Sir.

First, I must solicit your confidence in 
this transaction, this is by virture of its 
nature as being utterly confidencial and 
top secret. …

TO BE REMOVED FROM FUTURE 
MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, 
but when I plugged it in, hit the power 
nothing happened.



Digit Recognition

 Input: images / pixel grids
 Output: a digit 0-9

 Setup:
 Get a large collection of example images, each labeled with a digit
 Note: someone has to hand label all this data!
 Want to learn to predict labels of new, future digit images

 Features: The attributes used to make the digit decision
 Pixels: (6,8)=ON
 Shape Patterns: NumComponents, AspectRatio, NumLoops
 …
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Review Other Classification Tasks

 Classification: given inputs x, predict labels y

 Examples:
 Spam detection (input: document,

classes: spam / ham)
 OCR (input: images, classes: characters)
 Medical diagnosis (input: symptoms,

classes: diseases)
 Automatic essay grading (input: document,

classes: grades)
 Fraud detection (input: account activity,

classes: fraud / no fraud)
 Customer service email routing
 … many more

 Classification is an important commercial technology!



Model-Based Classification

 Model-based approach
 Build a model (e.g. Bayes’ net) where 

both the label and features are 
random variables

 Instantiate any observed features
 Query for the distribution of the label 

conditioned on the features

 Challenges
 What structure should the BN have?
 How should we learn its parameters?



Naïve Bayes for Digits

 Naïve Bayes: Assume all features are independent effects of the label

 Simple digit recognition version:
 One feature (variable) Fij for each grid position <i,j>
 Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
 Each input maps to a feature vector, e.g.

 Here: lots of features, each is binary valued

 Naïve Bayes model:

 What do we need to learn?

Y

F1 FnF2



General Naïve Bayes

 A general Naive Bayes model:

 We only have to specify how each feature depends on the class
 Total number of parameters is linear in number of features
 Model is very simplistic, but often works anyway

Y

F1 FnF2

|Y| labels

n x |F| x |Y| 
parameters

|Y| x |F|n values



Inference for Naïve Bayes

 Goal: compute posterior distribution over label variable Y
 Step 1: get joint probability of label and evidence for each label

 Step 2: sum to get probability of evidence

 Step 3: normalize by dividing Step 1 by Step 2

+



General Naïve Bayes

 What do we need in order to use Naïve Bayes?

 Inference method (we just saw this part)
 Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
 Use standard inference to compute P(Y|F1…Fn)
 Nothing new here

 Estimates of local conditional probability tables
 P(Y), the prior over labels
 P(Fi|Y) for each feature (evidence variable)
 These probabilities are collectively called the parameters of the model 

and denoted by θ
 Up until now, we assumed these appeared by magic, but…
 …they typically come from training data counts: we’ll look at this soon



Example: Conditional Probabilities

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80



Naïve Bayes for Text

 Bag-of-words Naïve Bayes:
 Features: Wi is the word at positon i
 As before: predict label conditioned on feature variables (spam vs. ham)
 As before: assume features are conditionally independent given label
 New: each Wi is identically distributed

 Generative model:

 “Tied” distributions and bag-of-words
 Usually, each variable gets its own conditional probability distribution P(F|Y)
 In a bag-of-words model

 Each position is identically distributed
 All positions share the same conditional probs P(W|Y)
 Why make this assumption?

 Called “bag-of-words” because model is insensitive to word order or reordering

Word at position 
i, not ith word in 
the dictionary!



Example: Spam Filtering

 Model:

 What are the parameters?

 Where do these tables come from?

the :  0.0156
to  : 0.0153
and :  0.0115
of  : 0.0095
you :  0.0093
a   :  0.0086
with: 0.0080
from:  0.0075
...

the :  0.0210
to  : 0.0133
of  : 0.0119
2002:  0.0110
with: 0.0108
from:  0.0107
and :  0.0105
a   :  0.0100
...

ham : 0.66
spam: 0.33



Training and Testing



Important Concepts

 Data: labeled instances, e.g. emails marked spam/ham
 Training set
 Held out set
 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set
 (Tune hyperparameters on held-out set)
 Compute accuracy of test set
 Very important: never “peek” at the test set!

 Evaluation
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data
 Overfitting: fitting the training data very closely, but not 

generalizing well
 We’ll investigate overfitting and generalization formally in a few 

lectures

Training
Data

Held-Out
Data

Test
Data



Generalization and Overfitting
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Example: Overfitting

2 wins!!



Example: Overfitting

 Posteriors determined by relative probabilities (odds ratios):

south-west : inf
nation     : inf
morally    : inf
nicely     : inf
extent     : inf
seriously  : inf
...

What went wrong here?

screens    : inf
minute     : inf
guaranteed : inf
$205.00    : inf
delivery   : inf
signature  : inf
...



Generalization and Overfitting

 Relative frequency parameters will overfit the training data!
 Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
 Unlikely that every occurrence of “minute” is 100% spam
 Unlikely that every occurrence of “seriously” is 100% ham
 What about all the words that don’t occur in the training set at all?
 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only feature
 Would get the training data perfect (if deterministic labeling)
 Wouldn’t generalize at all
 Just making the bag-of-words assumption gives us some generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates



Parameter Estimation



Parameter Estimation

 Estimating the distribution of a random variable

 Elicitation: ask a human (why is this hard?)

 Empirically: use training data (learning!)
 E.g.: for each outcome x, look at the empirical rate of that value:

 This is the estimate that maximizes the likelihood of the data

r r b

r b b

r bb
rb b

r bb

r

b

b



Maximum Likelihood

 Relative frequencies are the maximum likelihood estimates



Unseen Events



Laplace Smoothing

 Laplace’s estimate:
 Pretend you saw every outcome 

once more than you actually did

 Can derive this estimate with 
Dirichlet priors

r r b



Laplace Smoothing

 Laplace’s estimate (extended):
 Pretend you saw every outcome k extra times

 What’s Laplace with k = 0?
 k is the strength of the prior

 Laplace for conditionals:
 Smooth each condition independently:

r r b



Estimation: Linear Interpolation* 

 In practice, Laplace often performs poorly for P(X|Y):
 When |X| is very large
 When |Y| is very large

 Another option: linear interpolation
 Also get the empirical P(X) from the data
 Make sure the estimate of P(X|Y) isn’t too different from the empirical P(X)

 What if α is 0?  1?

 For even better ways to estimate parameters, take CIS 530 next 
semester.  



Real NB: Smoothing

 For real classification problems, smoothing is critical
 New odds ratios:

seems     : 10.8
group     : 10.2
ago       :  8.4
areas     :  8.3
...

Credit  : 28.4
ORDER   : 27.2
<FONT>  : 26.9
money   : 26.5
...

Do these make more sense?



Tuning



Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns
 Parameters: the probabilities P(X|Y), P(Y)
 Hyperparameters: e.g. the amount / type of 

smoothing to do, k, α

 What should we learn where?
 Learn parameters from training data
 Tune hyperparameters on different data

 Why?
 For each value of the hyperparameters, train 

and test on the held-out data
 Choose the best value and do a final test on 

the test data



Features



Errors, and What to Do

 Examples of errors

Dear GlobalSCAPE Customer, 

GlobalSCAPE has partnered with ScanSoft to offer you the 
latest version of OmniPage Pro, for just $99.99* - the regular 
list price is $499! The most common question we've received 
about this offer is - Is this genuine? We would like to assure 
you that this offer is authorized by ScanSoft, is genuine and 
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, 
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are 
there. We hope you enjoyed receiving this message. However, if 
you'd rather not receive future e-mails announcing new store 
launches, please click . . .



What to Do About Errors?

 Need more features– words aren’t enough!
 Have you emailed the sender before?
 Have 1K other people just gotten the same email?
 Is the sending information consistent? 
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Can add these information sources as new 
variables in the NB model

 Next class we’ll talk about classifiers which let 
you easily add arbitrary features more easily



Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures
 Help determine how hard the task is
 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set
 E.g. for spam filtering, might label everything as ham
 Accuracy might be very high if the problem is skewed
 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline



Confidences from a Classifier

 The confidence of a probabilistic classifier:
 Posterior over the top label

 Represents how sure the classifier is of the 
classification

 Any probabilistic model will have confidences
 No guarantee confidence is correct

 Calibration
 Weak calibration: higher confidences mean 

higher accuracy
 Strong calibration: confidence predicts accuracy 

rate
 What’s the value of calibration?



Summary

 Bayes rule lets us do diagnostic queries with causal probabilities

 The naïve Bayes assumption takes all features to be independent given the class label

 We can build classifiers out of a naïve Bayes model using training data

 Smoothing estimates is important in real systems

 Classifier confidences are useful, when you can get them



What to Do About Errors

 Problem: there’s still spam in your inbox

 Need more features – words aren’t enough!
 Have you emailed the sender before?
 Have 1M other people just gotten the same email?
 Is the sending information consistent? 
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Naïve Bayes models can incorporate a variety of features, but tend to do 
best in homogeneous cases (e.g. all features are word occurrences)
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Perceptrons

Optional Reading: Chapter 1
Of Nielsen’s “Neural Networks and 

Deep Learning”

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html


Some (Simplified) Biology

 Very loose inspiration: human neurons



Linear Classifiers

 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?



Feature Vectors

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”



Weights
 Binary case: compare features to a weight vector
 Learning: figure out the weight vector from examples

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

Dot product            positive 
means the positive class



Decision Rules



Binary Decision Rule

 In the space of feature vectors
 Examples are points
 Any weight vector is a hyperplane
 One side corresponds to Y=+1
 Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Weight Updates



Learning: Binary Perceptron

 Start with weights = 0
 For each training instance:
 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector



Learning: Binary Perceptron

 Start with weights = 0
 For each training instance:
 Classify with current weights

 If correct (i.e., y=y*), no change!
 If wrong: adjust the weight vector by 

adding or subtracting the feature 
vector. Subtract if y* is -1.



3Blue1Brown

 Need a refresher on linear algebra topics like vector addition and 
matrix multiplication?
 I recommend the wonderful YouTube series by Grant Sanderson.  

His channel is called 3Blue1Brown.
 Grant gives intuitive visual tutorials to a ton of math concepts 
 Here is his “Essence of Linear Algebra” series:
 https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2x

VFitgF8hE_ab

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab


Examples: Perceptron

 Separable Case



Multiclass Decision Rule

 If we have multiple classes:
 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

 Start with all weights = 0
 Pick up training examples one by one
 Predict with current weights

 If correct, no change!
 If wrong: lower score of wrong answer, 

raise score of right answer



Example: Multiclass Perceptron

BIAS  : 1
win   : 0
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0  
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

BIAS  : 0 
win   : 0 
game  : 0 
vote  : 0 
the   : 0  
...

“win the vote”

“win the election”

“win the game”



Properties of Perceptrons

 Separability: true if some parameters get the training set 
perfectly correct

 Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

 Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



Examples: Perceptron

 Non-Separable Case



Improving the Perceptron



Problems with the Perceptron

 Noise: if the data isn’t separable, 
weights might thrash
 Averaging weight vectors over time 

can help (averaged perceptron)

 Mediocre generalization: finds a 
“barely” separating solution

 Overtraining: test / held-out 
accuracy usually rises, then falls
 Overtraining is a kind of overfitting



Fixing the Perceptron

 Idea: adjust the weight update to mitigate these effects

 MIRA*: choose an update size that fixes the current 
mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum Correcting Update

min not τ=0, or would not have 
made an error, so min will be 
where equality holds



Maximum Step Size

 In practice, it’s also bad to make updates that are too large
 Example may be labeled incorrectly
 You may not have enough features
 Solution: cap the maximum possible value of τ with some 

constant C

 Corresponds to an optimization that assumes non-separable data
 Usually converges faster than perceptron
 Usually better, especially on noisy data



Linear Separators

 Which of these linear separators is optimal? 



Support Vector Machines

 Maximizing the margin: good according to intuition, theory, practice
 Only support vectors matter; other training examples are ignorable 
 Support vector machines (SVMs) find the separator with max margin
 Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

SVM



Classification: Comparison

 Naïve Bayes
 Builds a model training data
 Gives prediction probabilities
 Strong assumptions about feature independence
 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data
 Mistake-driven learning
 Multiple passes through data (prediction)
 Often more accurate
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