
Slides courtesy of Dan Klein and Pieter Abbeel --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Naïve Bayes and Perceptrons

Read AIMA Chapter 19.1-19.6

Machine Learning

 Up until now: how use a model to make optimal decisions

 Machine learning: how to acquire a model from data / experience
 Learning parameters (e.g. probabilities)
 Learning structure (e.g. BN graphs)
 Learning hidden concepts (e.g. clustering)

 Today: model-based classification with Naive Bayes and
Perceptrons

Spam Classification

 Input: an email
 Output: spam/ham

 Setup:
 Get a large collection of example emails, each labeled

“spam” or “ham”
 Note: someone has to hand label all this data!
 Want to learn to predict labels of new, future emails

 Features: The attributes used to make the ham /
spam decision
 Words: FREE!
 Text Patterns: $dd, CAPS
 Non-text: SenderInContacts
 …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Digit Recognition

 Input: images / pixel grids
 Output: a digit 0-9

 Setup:
 Get a large collection of example images, each labeled with a digit
 Note: someone has to hand label all this data!
 Want to learn to predict labels of new, future digit images

 Features: The attributes used to make the digit decision
 Pixels: (6,8)=ON
 Shape Patterns: NumComponents, AspectRatio, NumLoops
 …

0

1

2

1

??

Review Other Classification Tasks

 Classification: given inputs x, predict labels y

 Examples:
 Spam detection (input: document,

classes: spam / ham)
 OCR (input: images, classes: characters)
 Medical diagnosis (input: symptoms,

classes: diseases)
 Automatic essay grading (input: document,

classes: grades)
 Fraud detection (input: account activity,

classes: fraud / no fraud)
 Customer service email routing
 … many more

 Classification is an important commercial technology!

Model-Based Classification

 Model-based approach
 Build a model (e.g. Bayes’ net) where

both the label and features are
random variables

 Instantiate any observed features
 Query for the distribution of the label

conditioned on the features

 Challenges
 What structure should the BN have?
 How should we learn its parameters?

Naïve Bayes for Digits

 Naïve Bayes: Assume all features are independent effects of the label

 Simple digit recognition version:
 One feature (variable) Fij for each grid position <i,j>
 Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
 Each input maps to a feature vector, e.g.

 Here: lots of features, each is binary valued

 Naïve Bayes model:

 What do we need to learn?

Y

F1 FnF2

General Naïve Bayes

 A general Naive Bayes model:

 We only have to specify how each feature depends on the class
 Total number of parameters is linear in number of features
 Model is very simplistic, but often works anyway

Y

F1 FnF2

|Y| labels

n x |F| x |Y|
parameters

|Y| x |F|n values

Inference for Naïve Bayes

 Goal: compute posterior distribution over label variable Y
 Step 1: get joint probability of label and evidence for each label

 Step 2: sum to get probability of evidence

 Step 3: normalize by dividing Step 1 by Step 2

+

General Naïve Bayes

 What do we need in order to use Naïve Bayes?

 Inference method (we just saw this part)
 Start with a bunch of probabilities: P(Y) and the P(Fi|Y) tables
 Use standard inference to compute P(Y|F1…Fn)
 Nothing new here

 Estimates of local conditional probability tables
 P(Y), the prior over labels
 P(Fi|Y) for each feature (evidence variable)
 These probabilities are collectively called the parameters of the model

and denoted by θ
 Up until now, we assumed these appeared by magic, but…
 …they typically come from training data counts: we’ll look at this soon

Example: Conditional Probabilities

1 0.1
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1
8 0.1
9 0.1
0 0.1

1 0.01
2 0.05
3 0.05
4 0.30
5 0.80
6 0.90
7 0.05
8 0.60
9 0.50
0 0.80

1 0.05
2 0.01
3 0.90
4 0.80
5 0.90
6 0.90
7 0.25
8 0.85
9 0.60
0 0.80

Naïve Bayes for Text

 Bag-of-words Naïve Bayes:
 Features: Wi is the word at positon i
 As before: predict label conditioned on feature variables (spam vs. ham)
 As before: assume features are conditionally independent given label
 New: each Wi is identically distributed

 Generative model:

 “Tied” distributions and bag-of-words
 Usually, each variable gets its own conditional probability distribution P(F|Y)
 In a bag-of-words model

 Each position is identically distributed
 All positions share the same conditional probs P(W|Y)
 Why make this assumption?

 Called “bag-of-words” because model is insensitive to word order or reordering

Word at position
i, not ith word in
the dictionary!

Example: Spam Filtering

 Model:

 What are the parameters?

 Where do these tables come from?

the : 0.0156
to : 0.0153
and : 0.0115
of : 0.0095
you : 0.0093
a : 0.0086
with: 0.0080
from: 0.0075
...

the : 0.0210
to : 0.0133
of : 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and : 0.0105
a : 0.0100
...

ham : 0.66
spam: 0.33

Training and Testing

Important Concepts

 Data: labeled instances, e.g. emails marked spam/ham
 Training set
 Held out set
 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set
 (Tune hyperparameters on held-out set)
 Compute accuracy of test set
 Very important: never “peek” at the test set!

 Evaluation
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data
 Overfitting: fitting the training data very closely, but not

generalizing well
 We’ll investigate overfitting and generalization formally in a few

lectures

Training
Data

Held-Out
Data

Test
Data

Generalization and Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Example: Overfitting

2 wins!!

Example: Overfitting

 Posteriors determined by relative probabilities (odds ratios):

south-west : inf
nation : inf
morally : inf
nicely : inf
extent : inf
seriously : inf
...

What went wrong here?

screens : inf
minute : inf
guaranteed : inf
$205.00 : inf
delivery : inf
signature : inf
...

Generalization and Overfitting

 Relative frequency parameters will overfit the training data!
 Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
 Unlikely that every occurrence of “minute” is 100% spam
 Unlikely that every occurrence of “seriously” is 100% ham
 What about all the words that don’t occur in the training set at all?
 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only feature
 Would get the training data perfect (if deterministic labeling)
 Wouldn’t generalize at all
 Just making the bag-of-words assumption gives us some generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates

Parameter Estimation

Parameter Estimation

 Estimating the distribution of a random variable

 Elicitation: ask a human (why is this hard?)

 Empirically: use training data (learning!)
 E.g.: for each outcome x, look at the empirical rate of that value:

 This is the estimate that maximizes the likelihood of the data

r r b

r b b

r bb
rb b

r bb

r

b

b

Maximum Likelihood

 Relative frequencies are the maximum likelihood estimates

Unseen Events

Laplace Smoothing

 Laplace’s estimate:
 Pretend you saw every outcome

once more than you actually did

 Can derive this estimate with
Dirichlet priors

r r b

Laplace Smoothing

 Laplace’s estimate (extended):
 Pretend you saw every outcome k extra times

 What’s Laplace with k = 0?
 k is the strength of the prior

 Laplace for conditionals:
 Smooth each condition independently:

r r b

Estimation: Linear Interpolation*

 In practice, Laplace often performs poorly for P(X|Y):
 When |X| is very large
 When |Y| is very large

 Another option: linear interpolation
 Also get the empirical P(X) from the data
 Make sure the estimate of P(X|Y) isn’t too different from the empirical P(X)

 What if α is 0? 1?

 For even better ways to estimate parameters, take CIS 530 next
semester.

Real NB: Smoothing

 For real classification problems, smoothing is critical
 New odds ratios:

seems : 10.8
group : 10.2
ago : 8.4
areas : 8.3
...

Credit : 28.4
ORDER : 27.2
 : 26.9
money : 26.5
...

Do these make more sense?

Tuning

Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns
 Parameters: the probabilities P(X|Y), P(Y)
 Hyperparameters: e.g. the amount / type of

smoothing to do, k, α

 What should we learn where?
 Learn parameters from training data
 Tune hyperparameters on different data

 Why?
 For each value of the hyperparameters, train

and test on the held-out data
 Choose the best value and do a final test on

the test data

Features

Errors, and What to Do

 Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click . . .

What to Do About Errors?

 Need more features– words aren’t enough!
 Have you emailed the sender before?
 Have 1K other people just gotten the same email?
 Is the sending information consistent?
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Can add these information sources as new
variables in the NB model

 Next class we’ll talk about classifiers which let
you easily add arbitrary features more easily

Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures
 Help determine how hard the task is
 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set
 E.g. for spam filtering, might label everything as ham
 Accuracy might be very high if the problem is skewed
 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

 The confidence of a probabilistic classifier:
 Posterior over the top label

 Represents how sure the classifier is of the
classification

 Any probabilistic model will have confidences
 No guarantee confidence is correct

 Calibration
 Weak calibration: higher confidences mean

higher accuracy
 Strong calibration: confidence predicts accuracy

rate
 What’s the value of calibration?

Summary

 Bayes rule lets us do diagnostic queries with causal probabilities

 The naïve Bayes assumption takes all features to be independent given the class label

 We can build classifiers out of a naïve Bayes model using training data

 Smoothing estimates is important in real systems

 Classifier confidences are useful, when you can get them

What to Do About Errors

 Problem: there’s still spam in your inbox

 Need more features – words aren’t enough!
 Have you emailed the sender before?
 Have 1M other people just gotten the same email?
 Is the sending information consistent?
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Naïve Bayes models can incorporate a variety of features, but tend to do
best in homogeneous cases (e.g. all features are word occurrences)

Slides Courtesy of Dan Klein and Pieter Abbeel --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Perceptrons

Optional Reading: Chapter 1
Of Nielsen’s “Neural Networks and

Deep Learning”

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html

Some (Simplified) Biology

 Very loose inspiration: human neurons

Linear Classifiers

 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1
...

“2”

Weights
 Binary case: compare features to a weight vector
 Learning: figure out the weight vector from examples

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...

free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
...

Dot product positive
means the positive class

Decision Rules

Binary Decision Rule

 In the space of feature vectors
 Examples are points
 Any weight vector is a hyperplane
 One side corresponds to Y=+1
 Other corresponds to Y=-1

BIAS : -3
free : 4
money : 2
... 0 1

0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM

Weight Updates

Learning: Binary Perceptron

 Start with weights = 0
 For each training instance:
 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector

Learning: Binary Perceptron

 Start with weights = 0
 For each training instance:
 Classify with current weights

 If correct (i.e., y=y*), no change!
 If wrong: adjust the weight vector by

adding or subtracting the feature
vector. Subtract if y* is -1.

3Blue1Brown

 Need a refresher on linear algebra topics like vector addition and
matrix multiplication?
 I recommend the wonderful YouTube series by Grant Sanderson.

His channel is called 3Blue1Brown.
 Grant gives intuitive visual tutorials to a ton of math concepts
 Here is his “Essence of Linear Algebra” series:
 https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2x

VFitgF8hE_ab

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Examples: Perceptron

 Separable Case

Multiclass Decision Rule

 If we have multiple classes:
 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

 Start with all weights = 0
 Pick up training examples one by one
 Predict with current weights

 If correct, no change!
 If wrong: lower score of wrong answer,

raise score of right answer

Example: Multiclass Perceptron

BIAS : 1
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

BIAS : 0
win : 0
game : 0
vote : 0
the : 0
...

“win the vote”

“win the election”

“win the game”

Properties of Perceptrons

 Separability: true if some parameters get the training set
perfectly correct

 Convergence: if the training is separable, perceptron will
eventually converge (binary case)

 Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

Separable

Non-Separable

Examples: Perceptron

 Non-Separable Case

Improving the Perceptron

Problems with the Perceptron

 Noise: if the data isn’t separable,
weights might thrash
 Averaging weight vectors over time

can help (averaged perceptron)

 Mediocre generalization: finds a
“barely” separating solution

 Overtraining: test / held-out
accuracy usually rises, then falls
 Overtraining is a kind of overfitting

Fixing the Perceptron

 Idea: adjust the weight update to mitigate these effects

 MIRA*: choose an update size that fixes the current
mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm

Minimum Correcting Update

min not τ=0, or would not have
made an error, so min will be
where equality holds

Maximum Step Size

 In practice, it’s also bad to make updates that are too large
 Example may be labeled incorrectly
 You may not have enough features
 Solution: cap the maximum possible value of τ with some

constant C

 Corresponds to an optimization that assumes non-separable data
 Usually converges faster than perceptron
 Usually better, especially on noisy data

Linear Separators

 Which of these linear separators is optimal?

Support Vector Machines

 Maximizing the margin: good according to intuition, theory, practice
 Only support vectors matter; other training examples are ignorable
 Support vector machines (SVMs) find the separator with max margin
 Basically, SVMs are MIRA where you optimize over all examples at once

MIRA

SVM

Classification: Comparison

 Naïve Bayes
 Builds a model training data
 Gives prediction probabilities
 Strong assumptions about feature independence
 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data
 Mistake-driven learning
 Multiple passes through data (prediction)
 Often more accurate

	Slide Number 1
	Machine Learning
	Spam Classification
	Digit Recognition
	Review Other Classification Tasks
	Model-Based Classification
	Naïve Bayes for Digits
	General Naïve Bayes
	Inference for Naïve Bayes
	General Naïve Bayes
	Example: Conditional Probabilities
	Naïve Bayes for Text
	Example: Spam Filtering
	Training and Testing
	Important Concepts
	Generalization and Overfitting
	Overfitting
	Example: Overfitting
	Example: Overfitting
	Generalization and Overfitting
	Parameter Estimation
	Parameter Estimation
	Maximum Likelihood
	Unseen Events
	Laplace Smoothing
	Laplace Smoothing
	Estimation: Linear Interpolation*
	Real NB: Smoothing
	Tuning
	Tuning on Held-Out Data
	Features
	Errors, and What to Do
	What to Do About Errors?
	Baselines
	Confidences from a Classifier
	Summary
	What to Do About Errors
	Slide Number 40
	Some (Simplified) Biology
	Linear Classifiers
	Feature Vectors
	Weights
	Decision Rules
	Binary Decision Rule
	Weight Updates
	Learning: Binary Perceptron
	Learning: Binary Perceptron
	3Blue1Brown
	Examples: Perceptron
	Multiclass Decision Rule
	Learning: Multiclass Perceptron
	Example: Multiclass Perceptron
	Properties of Perceptrons
	Examples: Perceptron
	Improving the Perceptron
	Problems with the Perceptron
	Fixing the Perceptron
	Minimum Correcting Update
	Maximum Step Size
	Linear Separators
	Support Vector Machines
	Classification: Comparison

