CIS 421/521: ARTIFICIAL INTELLIGENCE

Probabilities and Language Models

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables (states): Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

What Probabilities Are About

- Like logical assertions, probabilities are about possible worlds.
 Instead of strictly ruling out possibilities (where a logical assertion is false), probabilities quantify how likely a particular possible world is.
- In probability theory, the possible worlds are called the sample space, and they mutually exclusive and exhaustive.
- A fully specified probability model associates a probability **P**(*w*) with each possible world *w*.

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - U = Is the professor carrying an umbrella?
- $_{\circ}$ We denote random variables with capital letters

Axioms of Probability

The probability of any possible world is between 0 and 1.
 0 ≤ P(w) ≤ 1 for every w

• The total probability of the set of all possible worlds is 1: • $\sum_{w \in \Omega} P(w) = 1$

Probability Distributions

Unobserved random variables have distributions

🖗 Penn Engineering

- $_{\odot}~$ A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

• Must have:
$$P(W = rain) = 0.1$$
 and
 $\forall x \ P(X = x) \ge 0$

Shorthand notation:

P(hot) = P(T = hot),P(cold) = P(T = cold),P(rain) = P(W = rain),

OK *if* all domain entries are unique

$$\sum_{x} P(X = x) = 1$$

Joint Distributions

• A joint distribution over a set of random variables. A joint distribution over a set of random variables. Specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

$$P(x_1, x_2, \ldots x_n)$$

Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum P(x_1, x_2, \dots x_n) = 1$$

$$(x_1, x_2, \dots, x_n)$$
 $F(x_1, x_2, \dots, x_n)$

- $_{\circ}~$ Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

P(T,W)

Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - *Normalized:* sum to 1.0
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are *partial assignments*, like P(T=hot)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

😽 Penn Engineering

Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

 $P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$

• Marginalization (summing out): Combine collapsed rows by P(T)adding P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$
$$P(s) = \sum_{t} P(t, s)$$

TPhot
$$0.5$$
cold 0.5 $P(W)$ WPsun 0.6

0.4

rain

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability.

 $P(a|b) = \frac{P(a,b)}{P(b)}$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3
nnEngineering		

a conditional probability

$$P(a,b)$$

 $P(a,b)$
 $P(a)$ $P(b)$

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

P(T,W)		
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Renn Engineering

P(W|T)

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e conditional from joint)
- We generally compute conditional probabilitie
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- $_{\odot}$ $\,$ Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

* Works fine with multiple query variables, too

- We want:
 - $P(Q|e_1\ldots e_k)$

Step 3: Normalize

 $\times \frac{}{Z}$

- General case: \bigcirc

 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$

Step 1: Select the

Step 2: Sum out H to get joint of Query and evidence

The Product Rule P(y)P(x|y) = P(x,y)

• Example:

P(W)

R

sun

rain

Ρ

0.8

0.2

P(D W)			
D	W	Ρ	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	

rain

0.3

dry

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

😽 Penn Engineering

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

 $_{\circ}$ Why is this always true?

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- \circ Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Search

♫ iOS Autocomplete Song | Song A Day #2110

https://www.youtube.com/watch?v=M8MJFrdfGe0

Penn Engineering

Probabilistic Language Models

🖗 Penn Engineering

Probabilistic Language Models

• One goal: assign a probability to a sentence

- Autocomplete for texting
- Machine Translation
- Spelling Correction
- Speech Recognition
- Other Natural Language Generation tasks: summarization, questionanswering, dialog systems

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words
- Related task: probability of an upcoming word
- A model that computes either of these is called a language model or LM

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words
 P(W) = P(w₁,w₂,w₃,w₄,w₅...w_n)
- $_{\odot}$ $\,$ Related task: probability of an upcoming word

 $P(w_5 | w_1, w_2, w_3, w_4)$

A model that computes either of these

P(W) or $P(w_n | w_1, w_2...w_{n-1})$ is called a **language model**.

• Better: **the grammar** But **language model** or **LM** is standard

How to compute P(W)

• How to compute this joint probability:

P(the, underdog, Philadelphia, Eagles, won)

• Intuition: let's rely on the Chain Rule of Probability

The Chain Rule

The Chain Rule

- Recall the definition of conditional probabilities
 p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)
- More variables:

P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General

 $P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)...P(x_n | x_1, ..., x_{n-1})$

Joint probability of words in sentence

🐯 Penn Engineering

Joint probability of words in sentence

$$P(w_1w_2 \square w_n) = \prod_i P(w_i \mid w_1w_2 \square w_{i-1})$$

P("the underdog Philadelphia Eagles won") =

P(the) × P(underdog|the) × P(Philadelphia|the underdog) × P(Eagles|the underdog Philadelphia) x P(won|the underdog Philadelphia Eagles)

How to estimate these probabilities

 $_{\odot}$ Could we just count and divide?

How to estimate these probabilities

Could we just count and divide? Maximum likelihood estimation (MLE)

P(won|the underdog team) = <u>Count(the underdog team won)</u> Count(the underdog team)

• Why doesn't this work?

Penn Engineering

Simplifying Assumption = Markov Assumption

Simplifying Assumption = Markov Assumption

- P(won|the underdog team) \approx P(won|team)
- $_{\circ}$ Only depends on the previous k words, not the whole context
- $_{\circ} \approx P(won | underdog team)$
- $\circ \approx \mathsf{P}(\mathsf{W}_{i} | \mathsf{W}_{i-2} | \mathsf{W}_{i-1})$
- $P(W_1W_2W_3W_4...W_n) \approx \prod_{i=1}^{n} P(W_i | W_{i-k}...W_{i-1})$
- $_{\circ}$ K is the number of context words that we take into account

How much history should we use?

unigram	no history	$\prod_{i}^{n} \mathbf{p}(w_{i})$	$p(w_i) = \frac{count(w_i)}{all \ words}$
bigram	1 word as history	$\prod_{i}^{n} p(w_i w_{i-1})$	$p(w_i w_{i-1}) = \frac{count(w_{i-1}w_i)}{count(w_{i-1})}$
trigram	2 words as history	$\prod_{i}^{n} \mathbf{p}(w_i w_{i-2} w_{i-1})$	$p(w_i w_{i-2}w_{i-1}) = \frac{count(w_{i-2}w_{i-1}w_i)}{count(w_{i-2}w_{i-1})}$
4-gram	3 words as history	$\prod_{i}^{n} p(w_i w_{i-3}w_{i-2}w_{i-1})$	$p(w_i w_{i-3}w_{i-2}w_{i-1}) \\ = \frac{count(w_{i-3}w_{i-2}w_{i-1}w_i)}{count(w_{i-3}w_{i-3}w_{i-1})}$

Simplest case: Unigram model $P(w_1w_2 \square w_n) \approx \prod_i P(w_i)$

Some automatically generated sentences from a unigram model

fifth an of futures the an incorporated a a the inflation most dollars quarter in is mass

thrift did eighty said hard 'm july bullish

that or limited the

Bigram model

Condition on the previous word:

$$P(w_i \mid w_1 w_2 \square w_{i-1}) \approx P(w_i \mid w_{i-1})$$

texaco rose one in this issue is pursuing growth in a boiler house said mr. gurria mexico 's motion control proposal

without permission from five hundred fifty five yen

outside new car parking lot of the agreement reached

this would be a record november

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has long-distance dependencies:

"The computer(s) which I had just put into the machine room on the fifth floor is (are) crashing."

• But we can often get away with N-gram models

Language Modeling

Estimating N-gram Probabilities

Estimating bigram probabilities

The Maximum Likelihood Estimate

$$P(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i})}{c(w_{i-1})}$$

An example

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

$$P(I|~~) = \frac{2}{3} = .67 \qquad P(Sam|~~) = \frac{1}{3} = .33 \qquad P(am|I) = \frac{2}{3} = .67 P(~~|Sam) = \frac{1}{2} = 0.5 \qquad P(Sam|am) = \frac{1}{2} = .5 \qquad P(do|I) = \frac{1}{3} = .33~~$$

Problems for MLE

Train	Test
denied the allegations	denied the memo
denied the reports	
denied the claims	
denied the requests	

- \circ P(memo|denied the) = 0
- And we also assign 0 probability to all sentences containing it!

Problems for MLE

- Out of vocabulary items (OOV)
- $_{\circ}$ <unk> to deal with OOVs
- Fixed lexicon L of size V
- Normalize training data by replacing any word not in L with <unk>

 $_{\circ}~$ Avoid zeros with smoothing

Practical Issues

- \circ We do everything in log space
 - Avoid underflow
 - (also adding is faster than multiplying)

$$\log(p_1 \times p_2 \times p_3 \times p_4) = \log p_1 + \log p_2 + \log p_3 + \log p_4$$

Google N-Gram Release, August 2006

All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-Gram Release

- \circ serve as the incoming 92
- o serve as the incubator 99
- $_{\rm o}$ serve as the independent 794
- o serve as the index 223
- o serve as the indication 72
- o serve as the indicator 120
- o serve as the indicators 45
- serve as the indispensable 111
- o serve as the indispensible 40

serve as the individual 234
 <u>http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html</u>

😽 Penn Engineering