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Uncertainty

o General situation:

▪ Observed variables (evidence): Agent knows 
certain things about the state of the world (e.g., 
sensor readings or symptoms)

▪ Unobserved variables (states): Agent needs 
to reason about other aspects (e.g. where an 
object is or what disease is present)

▪ Model: Agent knows something about how the 
known variables relate to the unknown 
variables

o Probabilistic reasoning gives us a 
framework for managing our beliefs and 
knowledge



What Probabilities Are About

o Like logical assertions, probabilities are about possible worlds.  
Instead of strictly ruling out possibilities (where a logical assertion is 
false), probabilities quantify how likely a particular possible world is. 

o In probability theory, the possible worlds are called the sample 
space, and they mutually exclusive and exhaustive.  

o A fully specified probability model associates a probability P(𝑤𝑤) with 
each possible world 𝑤𝑤.  



Random Variables
o A random variable is some aspect of the world 

about which we (may) have uncertainty

▪ R = Is it raining?
▪ U = Is the professor carrying an umbrella?

o We denote random variables with capital letters



Axioms of Probability

o The probability of any possible world is between 0 and 1.
o 0 ≤ 𝑃𝑃 𝑤𝑤 ≤ 1 for every w

o The total probability of the set of all possible worlds is 1:
o ∑𝑤𝑤∈Ω𝑃𝑃(𝑤𝑤) = 1



Shorthand notation:

OK if all domain entries are unique

Probability Distributions
o Unobserved random variables have distributions

o A distribution is a TABLE of probabilities of values

o A probability (lower case value) is a single number

o Must have: and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3



Joint Distributions
o A joint distribution over a set of random variables:
specifies a real number for each assignment (or outcome): 

▪ Must obey:

o Size of distribution if n variables with domain sizes d?
▪ For all but the smallest distributions, impractical to write out!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Probabilistic Models
o A probabilistic model is a joint 

distribution over a set of random 
variables

o Probabilistic models:
▪ (Random) variables with domains 
▪ Assignments are called outcomes
▪ Joint distributions: say whether 

assignments (outcomes) are likely
▪ Normalized: sum to 1.0
▪ Ideally: only certain variables directly 

interact

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Distribution over T,W



Events
o An event is a set E of outcomes

o From a joint distribution, we can 
calculate the probability of any event
▪ Probability that it’s hot AND sunny?

▪ Probability that it’s hot?

▪ Probability that it’s hot OR sunny?

o Typically, the events we care about are 
partial assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Marginal Distributions

o Marginal distributions are sub-tables which eliminate 
variables 

o Marginalization (summing out): Combine collapsed rows by 
adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Conditional Probabilities
o A simple relation between joint and conditional 

probabilities
▪ In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)P(a)

P(a,b)



Conditional Distributions
o Conditional distributions are probability distributions 

over some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution



Probabilistic Inference
o Probabilistic inference: compute a desired 

probability from other known probabilities (e.g.
conditional from joint)

o We generally compute conditional probabilities 
▪ P(on time | no reported accidents) = 0.90
▪ These represent the agent’s beliefs given the 

evidence

o Probabilities change with new evidence:
▪ P(on time | no accidents, 5 a.m.) = 0.95
▪ P(on time | no accidents, 5 a.m., raining) = 0.80
▪ Observing new evidence causes beliefs to be 

updated



Inference by Enumeration

o General case:
▪ Evidence variables: 
▪ Query* variable:
▪ Hidden variables:

All variables

* Works fine with multiple 
query variables, too

 We want:

 Step 1: Select the 
entries consistent 
with the evidence

 Step 2: Sum out H to get joint 
of Query and evidence

 Step 3: Normalize



The Product Rule

o Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule
o More generally, can always write any joint 

distribution as an incremental product of conditional 
distributions

o Why is this always true?



Bayes’ Rule
o Two ways to factor a joint distribution over two 

variables:

o Dividing, we get:

o Why is this at all helpful?
▪ Lets us build one conditional from its reverse
▪ Often one conditional is tricky but the other one is simple
▪ Foundation of many systems we’ll see later (e.g. ASR, MT)

o In the running for most important AI equation!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


https://www.youtube.com/watch?v=M8MJFrdfGe0

https://www.youtube.com/watch?v=M8MJFrdfGe0


Probabilistic Language 
Models



Probabilistic Language Models

o One goal: assign a probability to a sentence

▪ Autocomplete for texting
▪ Machine Translation
▪ Spelling Correction
▪ Speech Recognition

o Other Natural Language Generation tasks: summarization, question-
answering, dialog systems



Probabilistic Language Modeling

o Goal: compute the probability of a sentence or sequence of words

o Related task: probability of an upcoming word

o A model that computes either of these is called a language model or LM



Probabilistic Language Modeling

o Goal: compute the probability of a sentence or sequence of words
P(W) = P(w1,w2,w3,w4,w5…wn)

o Related task: probability of an upcoming word
P(w5|w1,w2,w3,w4)

o A model that computes either of these
P(W)     or     P(wn|w1,w2…wn-1)          is called a language model.

o Better: the grammar       But language model or LM is standard



How to compute P(W)

o How to compute this joint probability:

P(the, underdog, Philadelphia, Eagles, won)

o Intuition: let’s rely on the Chain Rule of Probability



The Chain Rule



The Chain Rule

o Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting:   P(A,B) = P(A)P(B|A)

o More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

o The Chain Rule in General
P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)



Joint probability of words in sentence



Joint probability of words in sentence

P(“the underdog Philadelphia Eagles won”) =
P(the) ×

P(underdog|the) ×
P(Philadelphia|the underdog) ×
P(Eagles|the underdog Philadelphia) x
P(won|the underdog Philadelphia Eagles)



How to estimate these probabilities

o Could we just count and divide?



How to estimate these probabilities

o Could we just count and divide? Maximum likelihood estimation (MLE)

o Why doesn’t this work?

P(won|the underdog team) = Count(the underdog team won)
Count(the underdog team) 



Simplifying Assumption = Markov 
Assumption



Simplifying Assumption = Markov 
Assumption
o P(won|the underdog team) ≈ P(won|team)
o Only depends on the previous k words, not the whole context
o ≈ P(won|underdog team)
o ≈ P(wi|wi-2 wi-1)
o P(w1w2w3w4…wn) ≈ ∏𝑖𝑖

𝑛𝑛 P(wi|wi−k … wi−1)
o K is the number of context words that we take into account



How much history should we use?

unigram no history
�
𝑖𝑖

𝑛𝑛

p(𝑤𝑤𝑖𝑖) 𝑝𝑝 𝑤𝑤𝑖𝑖 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑖𝑖)
𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤

bigram 1 word as history
�
𝑖𝑖

𝑛𝑛

p(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−1) 𝑝𝑝 𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−1 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑖𝑖−1𝑤𝑤𝑖𝑖)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑖𝑖−1)

trigram 2 words as history
�
𝑖𝑖

𝑛𝑛

p(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1)
𝑝𝑝 𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1
=
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1𝑤𝑤𝑖𝑖)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1)

4-gram 3 words as history
�
𝑖𝑖

𝑛𝑛

p(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−3𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1)
𝑝𝑝 𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−3𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1
=
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑖𝑖−3𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1𝑤𝑤𝑖𝑖)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑖𝑖−3𝑤𝑤𝑖𝑖−3𝑤𝑤𝑖𝑖−1)



Simplest case: Unigram model

fifth an of futures the an incorporated a a the inflation most 
dollars quarter in is mass

thrift did eighty said hard 'm july bullish

that or limited the

Some automatically generated sentences from a unigram model



Condition on the previous word:

Bigram model

texaco rose one in this issue is pursuing growth in a boiler house said 
mr. gurria mexico 's motion control proposal 

without permission from five hundred fifty five yen 

outside new car parking lot of the agreement reached

this would be a record november



N-gram models

o We can extend to trigrams, 4-grams, 5-grams
o In general this is an insufficient model of language

▪ because language has long-distance dependencies:

“The computer(s) which I had just put into the machine room on the fifth 
floor is (are) crashing.”

o But we can often get away with N-gram models



Language Modeling
Estimating N-gram Probabilities



Estimating bigram probabilities

o The Maximum Likelihood Estimate



An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>



Problems for MLE

o Zeros

o P(memo|denied the) = 0
o And we also assign 0 probability to all sentences containing it!

Train Test
denied the allegations denied the memo

denied the reports

denied the claims

denied the requests



Problems for MLE

o Out of vocabulary items (OOV)
o <unk> to deal with OOVs
o Fixed lexicon L of size V
o Normalize training data by replacing any word not in L with <unk>

o Avoid zeros with smoothing



Practical Issues

o We do everything in log space
▪ Avoid underflow
▪ (also adding is faster than multiplying)



Google N-Gram Release, August 2006

…



Google N-Gram Release

o serve as the incoming 92
o serve as the incubator 99
o serve as the independent 794
o serve as the index 223
o serve as the indication 72
o serve as the indicator 120
o serve as the indicators 45
o serve as the indispensable 111
o serve as the indispensible 40
o serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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