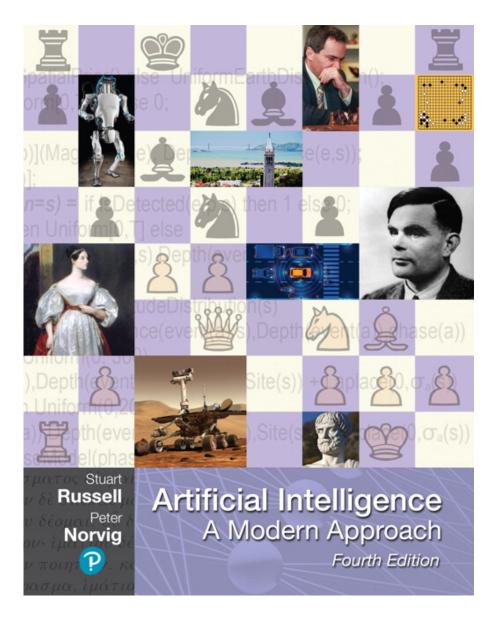
Bayes' Nets

Read AIMA Chapter 13 "Probabilistic Reasoning" (Sections 13.1, 13.2 and 13.3)



Slides courtesy of Dan Klein and Pieter Abbeel – University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)

Review: Independence

• Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

 $\forall x, y : P(x|y) = P(x)$

- We write: $X \! \perp \!\!\!\perp Y$
- Independence is a simplifying modeling assumption
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

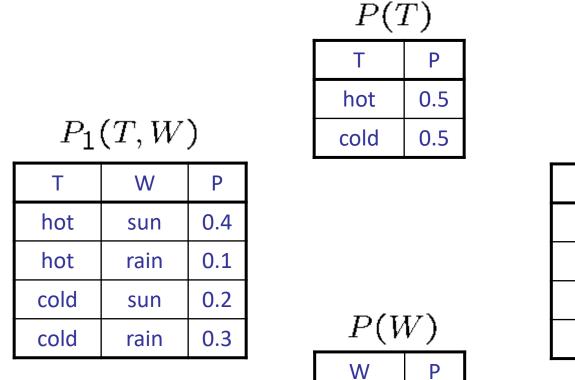
Review: Independence?

0.6

0.4

sun

rain

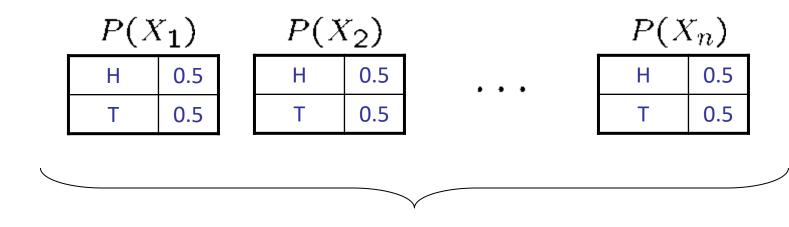


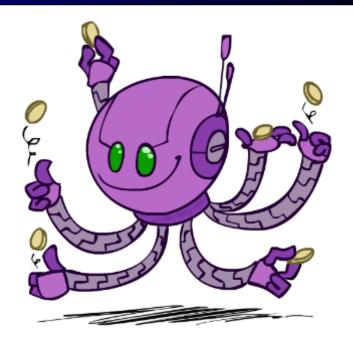
P_2	T.	W)
- ZV	· - ,		/

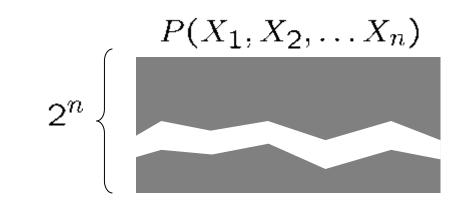
Т	W	Ρ
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Review: Independence

N fair, independent coin flips:

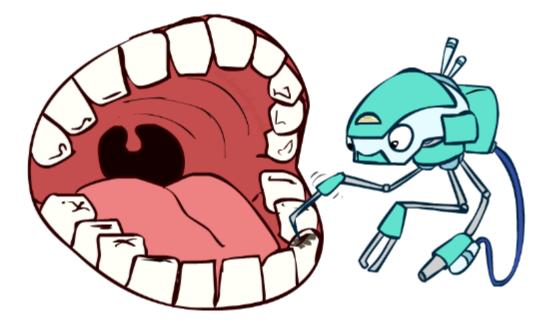






Review: Conditional Independence

- P(Toothache, Cavity, Detect)
- If I have a cavity, the probability that the probe detects it doesn't depend on whether I have a toothache:
 - P(+detect | +toothache, +cavity) = P(+detect | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+detect | +toothache, -cavity) = P(+detect | -cavity)
- Detect is *conditionally independent* of Toothache given Cavity:
 - P(Detect | Toothache, Cavity) = P(Detect | Cavity)
- Equivalent statements:
 - P(Toothache | Detect , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Detect | Cavity) = P(Toothache | Cavity) P(Detect | Cavity)
 - One can be derived from the other using the chain rule



Review: Conditional Independence

- Unconditional (absolute) independence very rare, and it doesn't help us make inferences about other variables.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $X \bot\!\!\!\perp Y | Z$

if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

or, equivalently, if and only if

 $\forall x, y, z : P(x|z, y) = P(x|z)$

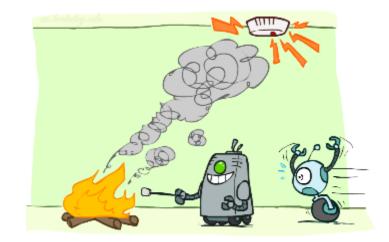
Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining



Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm



Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Trivial decomposition:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

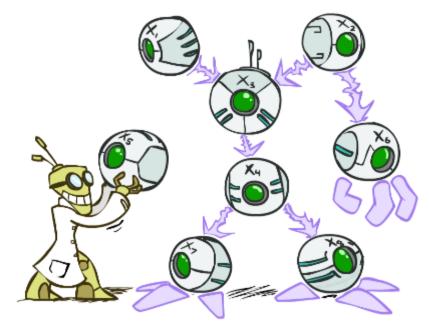
With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

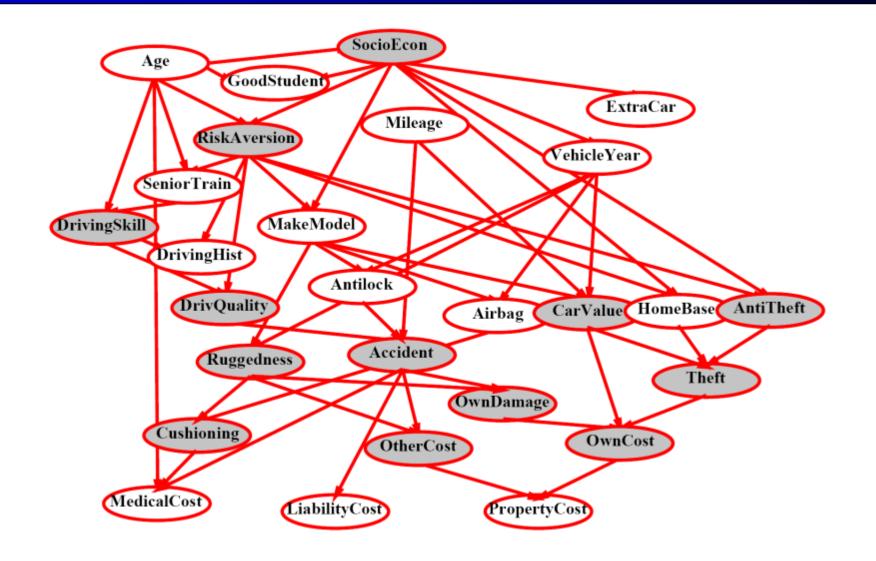
Bayes'nets / graphical models help us express conditional independence assumptions

Bayes' Nets: Big Picture

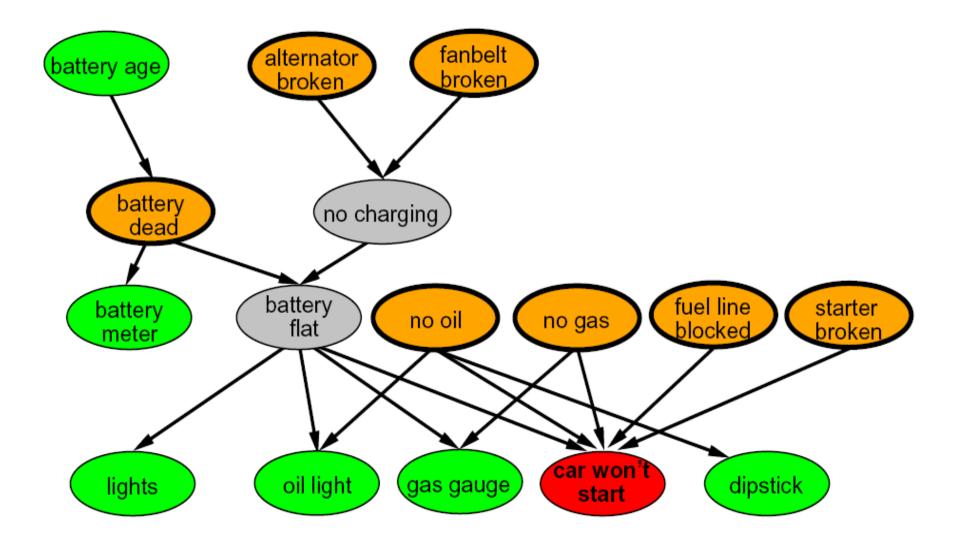
- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions



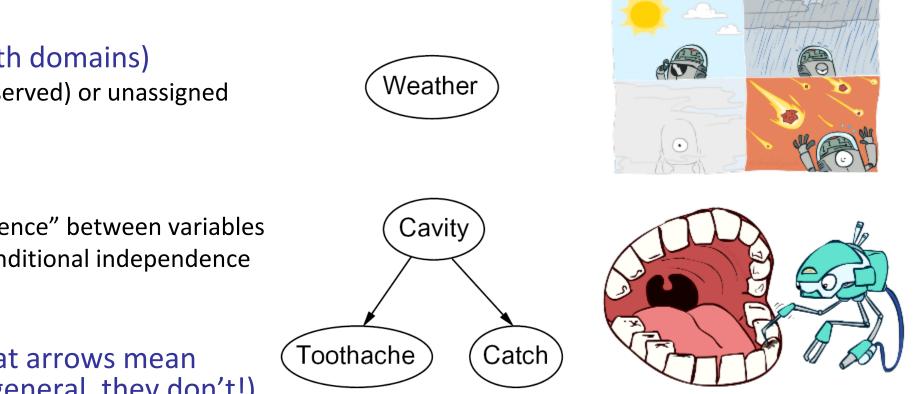
Example Bayes' Net: Insurance



Example Bayes' Net: Car

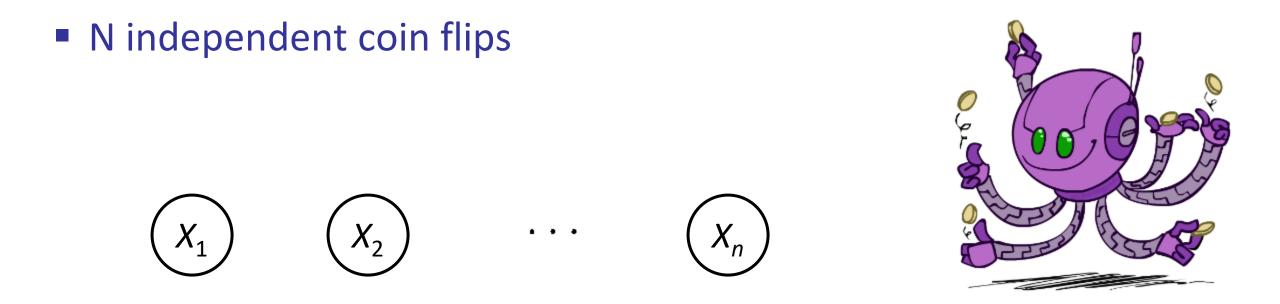


Graphical Model Notation



- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips



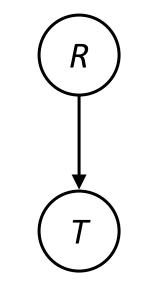
No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

Model 1: independence

Model 2: rain causes traffic



Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Traffic II

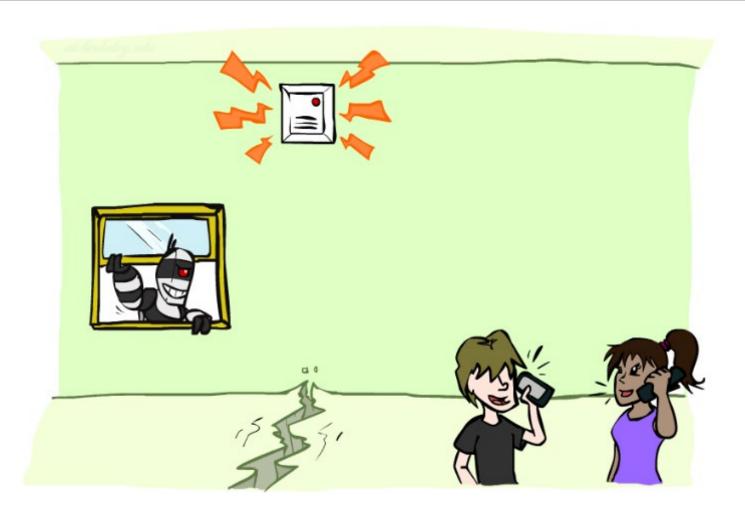
R

В

- Let's build a causal graphical model!
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

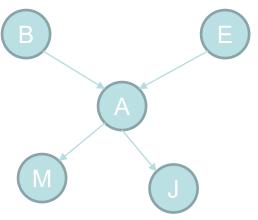
Example: Alarm Network

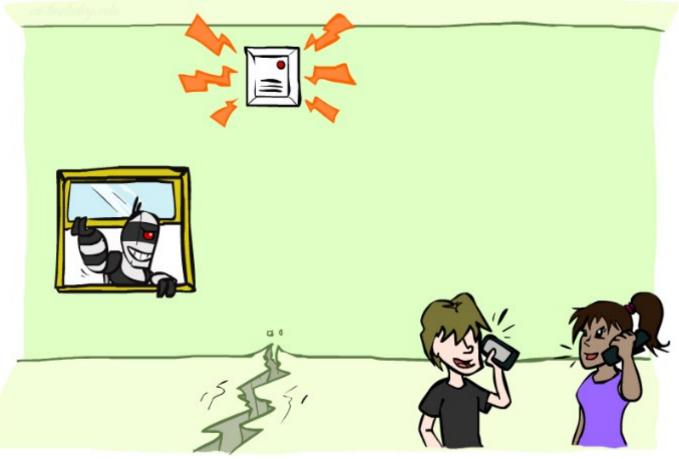
- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!



Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!



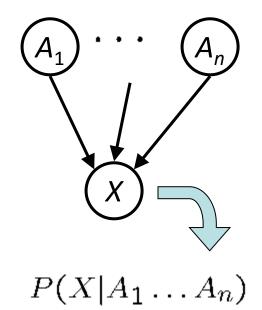


Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a noisy "causal" process



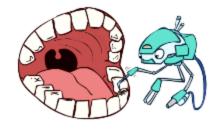
A Bayes net = Topology (graph) + Local Conditional Probabilities

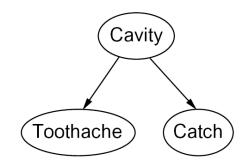
Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:





P(+*cavity*, +*detect*, -*toothache*)

Probabilities in BNs

Why are we guaranteed that setting

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

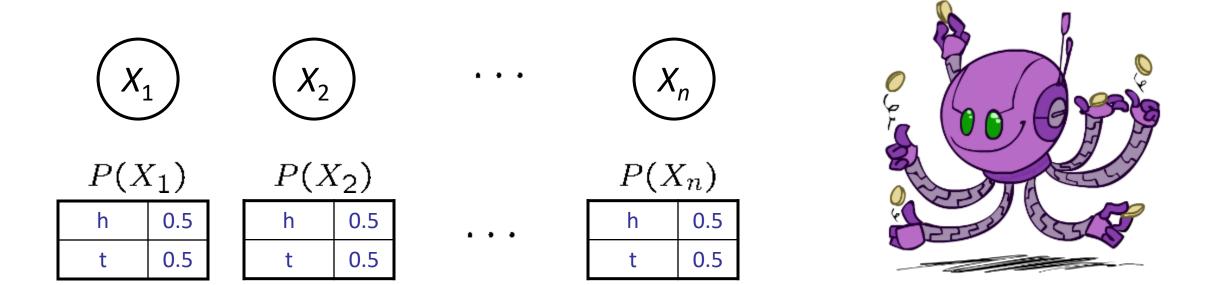
<u>Assume</u> conditional independences:

$$P(x_i|x_1, \dots, x_{i-1}) = P(x_i|parents(X_i))$$

→ Consequence:
$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

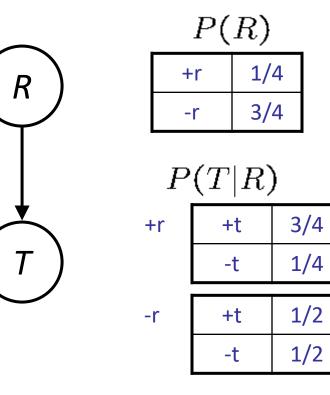
Example: Coin Flips



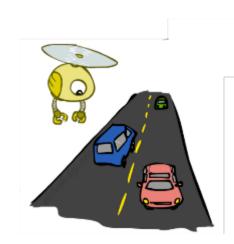
P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be represented by a Bayes ' net with no arcs.

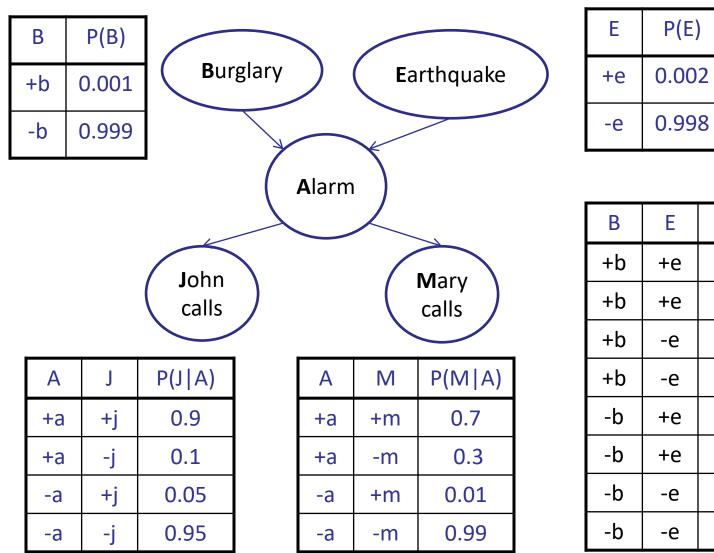
Example: Traffic

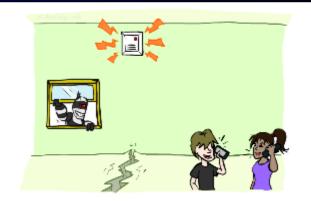


P(+r,-t) =



Example: Alarm Network

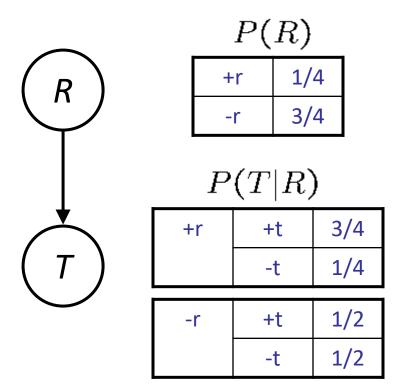




В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Traffic

Causal direction

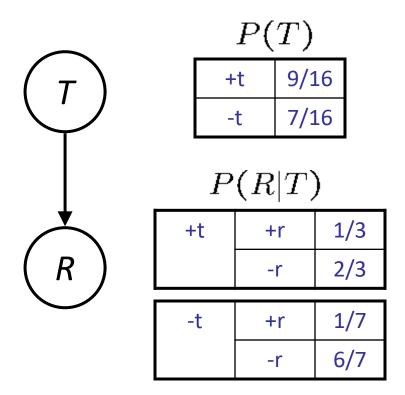


P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?



P(T,R)

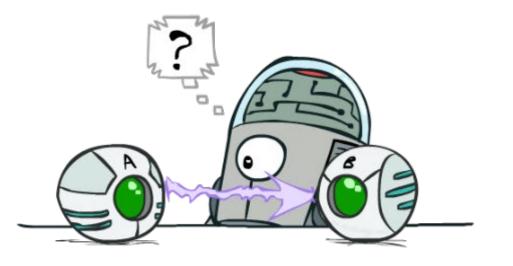
+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

When Bayes' nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

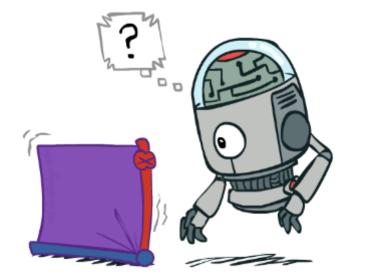
 $P(x_i|x_1,\ldots,x_{i-1}) = P(x_i|parents(X_i))$

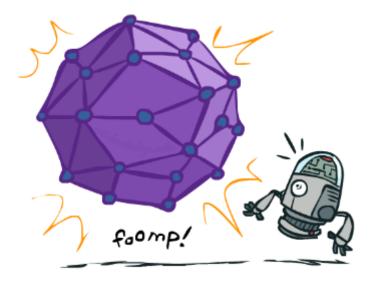


Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 - 2^N
- How big is an N-node net if nodes have up to k parents?
 O(N * 2^{k+1})

- Both give you the power to calculate
 - $P(X_1, X_2, \ldots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)





Review: Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) \ \neg \neg \neg \rightarrow \ X \bot Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \dashrightarrow \dashrightarrow X \perp Y|Z$$

- (Conditional) independence is a property of a distribution
- Example: $Alarm \perp Fire | Smoke$

Review: Conditional Independence

- Unconditional (absolute) independence very rare, and it doesn't help us make inferences about other variables.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $X \bot\!\!\!\perp Y | Z$

if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

or, equivalently, if and only if

 $\forall x, y, z : P(x|z, y) = P(x|z)$

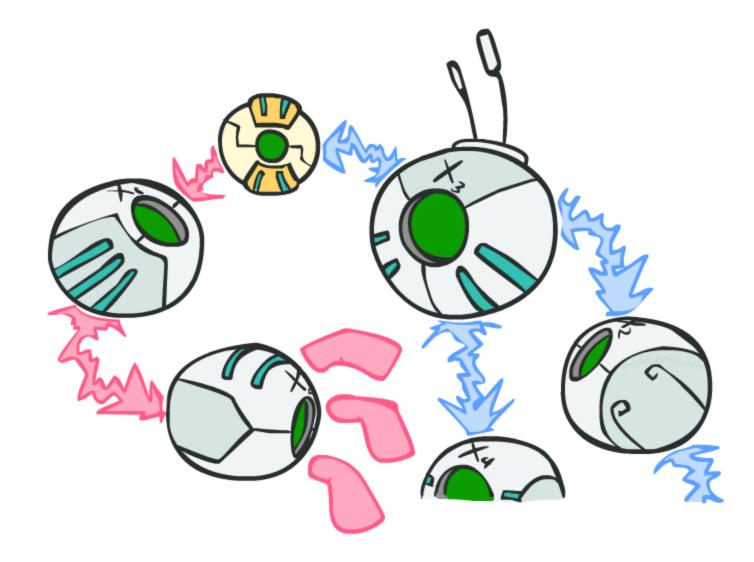
Review: Bayes Nets Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$

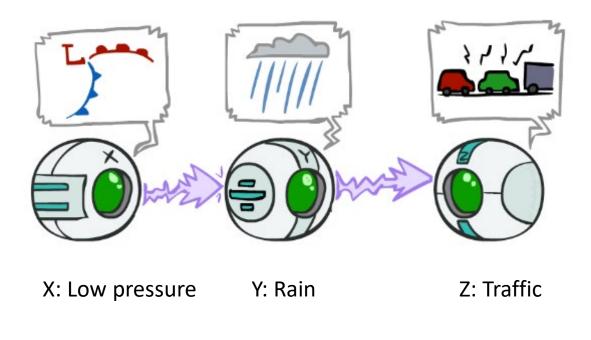
- Beyond the "chain rule → Bayes net" conditional independence assumptions
 - There are often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

D-separation: Outline



Causal Chains

This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= \frac{P(x)P(y|x)P(z|y)}{P(x,y)}$$

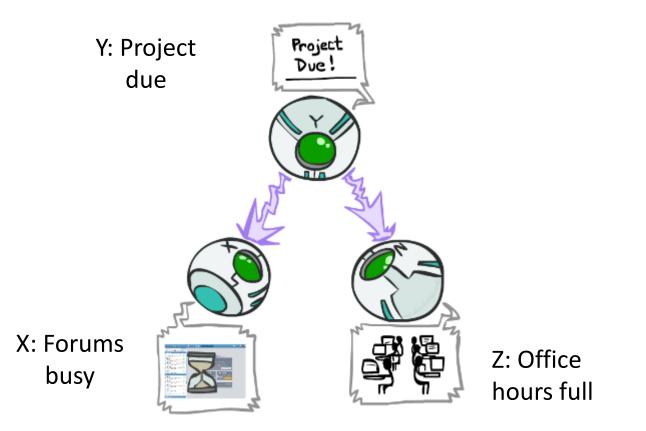
$$= P(z|y)$$

Yes!

Evidence along the chain "blocks" the influence

Common Cause

This configuration is a "common cause"



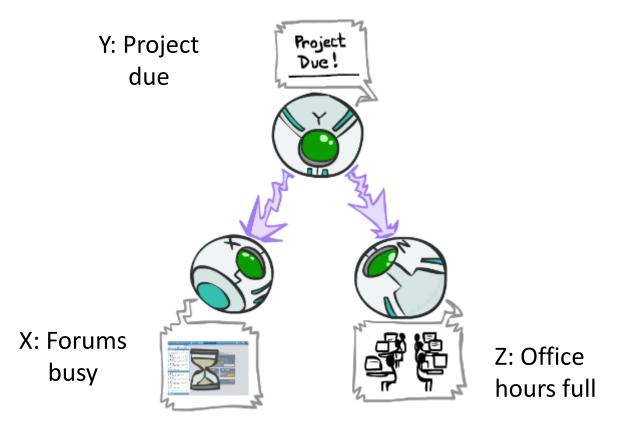
P(x, y, z) = P(y)P(x|y)P(z|y)

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and office hours to be full
 - In numbers:

P(+x | +y) = 1, P(-x | -y) = 1, P(+z | +y) = 1, P(-z | -y) = 1

Common Cause

This configuration is a "common cause"



P(x, y, z) = P(y)P(x|y)P(z|y)

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$=\frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

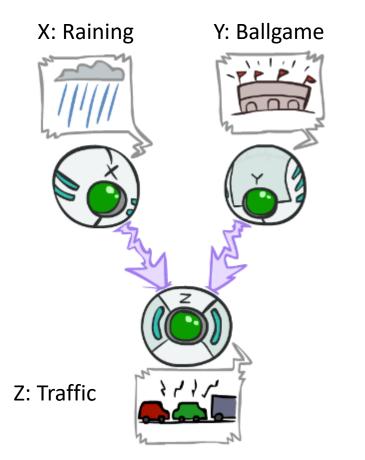
$$= P(z|y)$$

Yes!

Observing the cause blocks influence between effects.

Common Effect

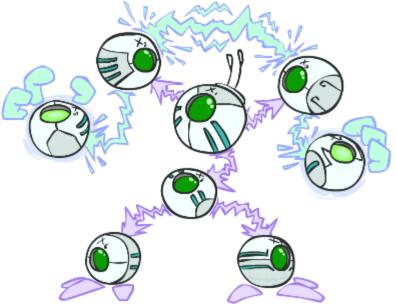
 Last configuration: two causes of one effect (v-structures)



- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

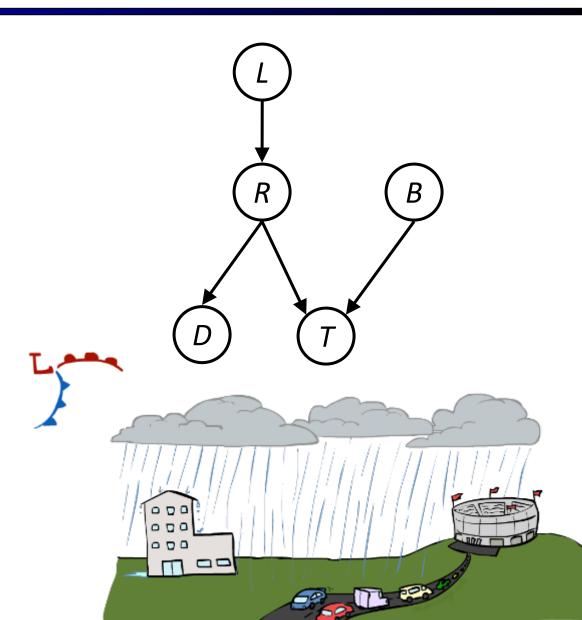
Are two variables in a BN independent?

- General question: in a given BN, are two variables independent (given some evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

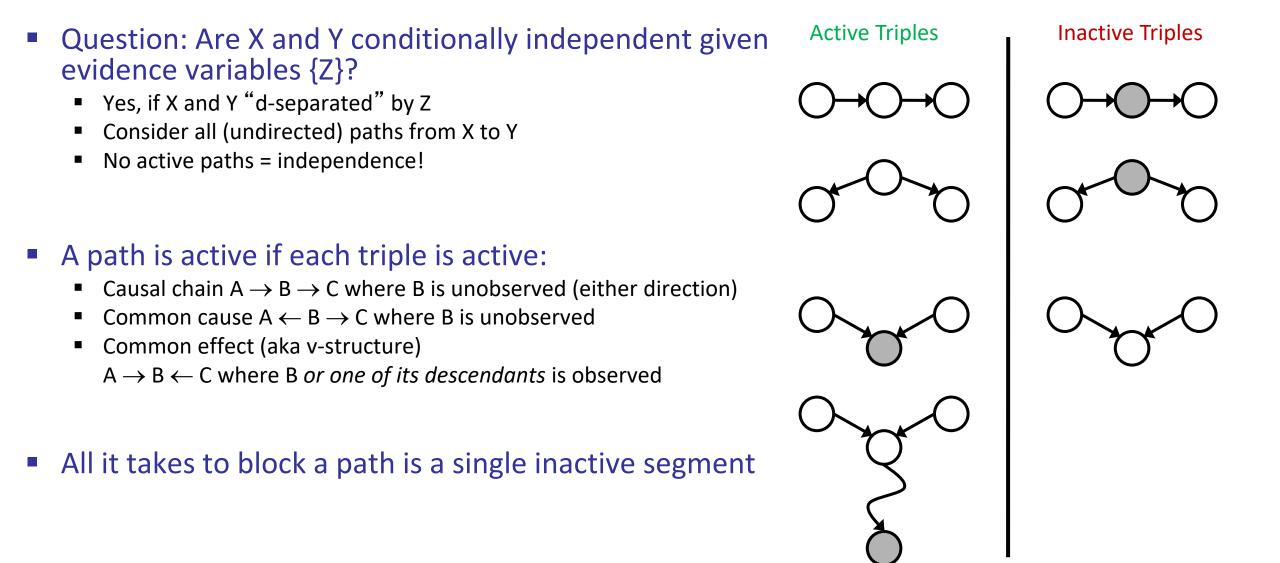


Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"



Active / Inactive Paths



D-Separation

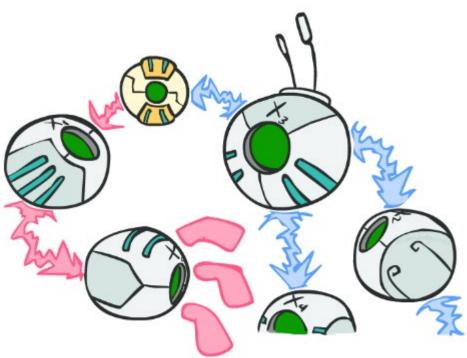
• Query:
$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$
?

- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \bowtie X_j | \{X_{k_1}, ..., X_{k_n}\}$$

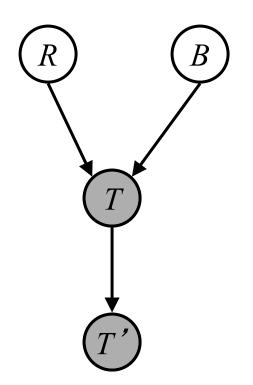
 Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \perp X_j | \{ X_{k_1}, \dots, X_{k_n} \}$$

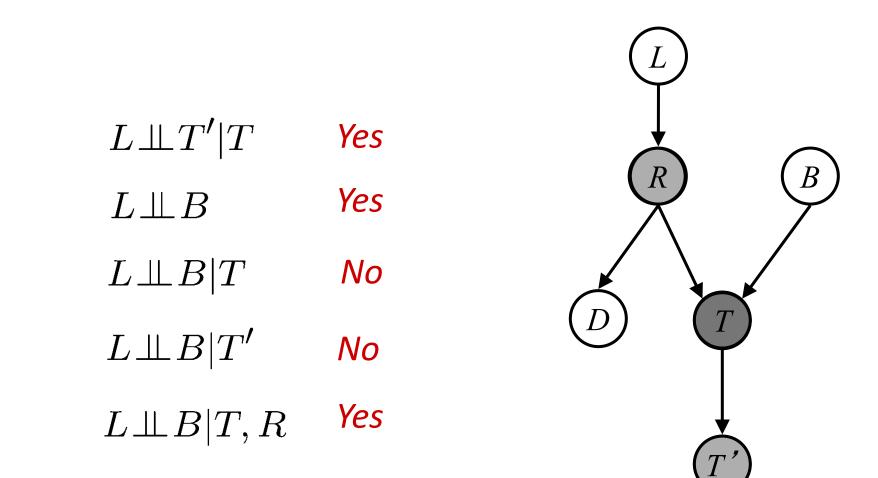


Example

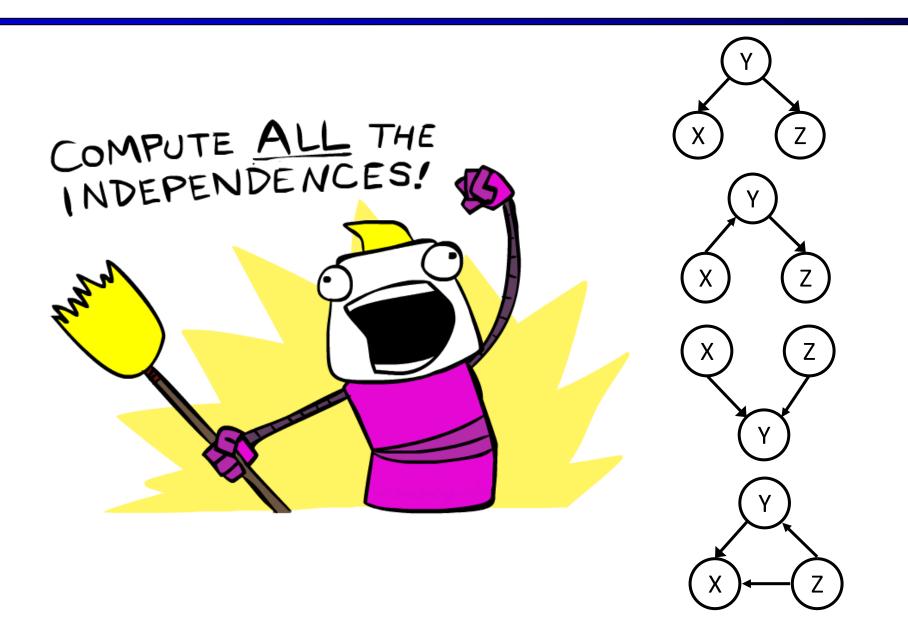
 $\begin{array}{c} R \bot B & Yes \\ R \bot B | T & No \\ R \bot B | T' & No \end{array}$



Example



Computing All Independences



Inference

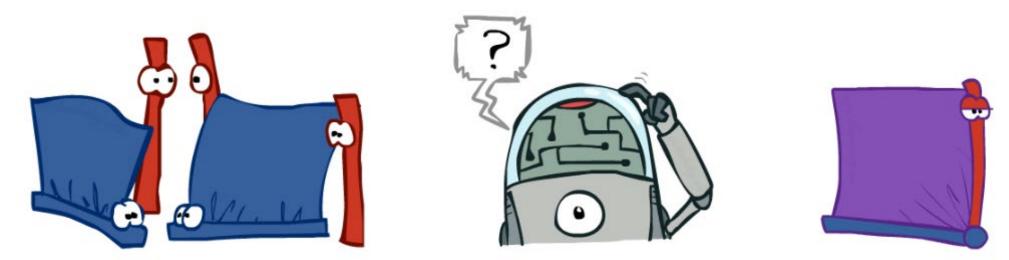
 Inference: calculating some useful quantity from a joint probability distribution

• Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Most likely explanation:
 - $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$



Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\begin{bmatrix} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{bmatrix} X_1, X_2, \dots X_n$ All variables

 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$

We want:

* Works fine with multiple query variables, too

 $P(Q|e_1 \dots e_k)$

 Step 1: Select the entries consistent with the evidence

-3

-1

5

0

Poo

0.05

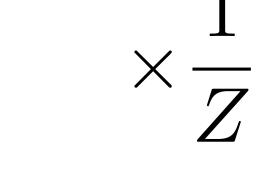
0.25

0.2

0.01

0.07

 Step 2: Sum out H to get joint of Query and evidence Step 3: Normalize



 $Z = \sum_{q} P(Q, e_1 \cdots e_k)$ $P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$

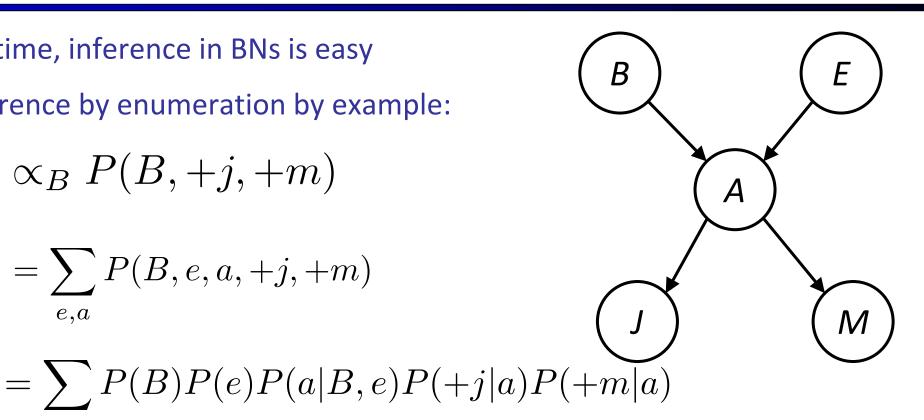
Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto_B P(B,+j,+m)$

e,a

$$=\sum_{e,a} P(B, e, a, +j, +m)$$



= P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)PP(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(+j|-a)P(-a|B,-e)P(-a|B,