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Bayes’ Nets

Read AIMA 
Chapter 13 “Probabilistic Reasoning” 

(Sections 13.1, 13.2 and 13.3)



Probabilistic Models

 Models describe how (a portion of) the world works

 Models are always simplifications
 May not account for every variable
 May not account for all interactions between variables
 “All models are wrong; but some are useful.”

– George E. P. Box

 What do we do with probabilistic models?
 We (or our agents) need to reason about unknown 

variables, given evidence
 Example: explanation (diagnostic reasoning)
 Example: prediction (causal reasoning)



 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption

 Empirical joint distributions: at best “close” to independent

 What could we assume for {Weather, Traffic, Cavity, Toothache}?

Review: Independence



Review: Independence?
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Review: Independence

 N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Review: Conditional Independence

 P(Toothache, Cavity, Detect)

 If I have a cavity, the probability that the probe detects it 
doesn't depend on whether I have a toothache:
 P(+detect | +toothache, +cavity) = P(+detect | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+detect | +toothache, -cavity) = P(+detect| -cavity)

 Detect is conditionally independent of Toothache given 
Cavity:
 P(Detect | Toothache, Cavity) = P(Detect | Cavity)

 Equivalent statements:
 P(Toothache | Detect , Cavity) = P(Toothache | Cavity)
 P(Toothache, Detect | Cavity) = P(Toothache | Cavity) P(Detect | Cavity)
 One can be derived from the other using the chain rule



Review: Conditional Independence

 Unconditional (absolute) independence very rare, and it 
doesn’t help us make inferences about other variables.

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

 X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

 What about this domain:

 Traffic
 Umbrella
 Raining



Conditional Independence

 What about this domain:

 Fire
 Smoke
 Alarm



Conditional Independence and the Chain Rule

 Chain rule: 

 Trivial decomposition:

 With assumption of conditional independence:

 Bayes’nets / graphical models help us express conditional independence assumptions



Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables 
as our probabilistic models:
 Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
 Hard to learn (estimate) anything empirically about more 

than a few variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions



Example Bayes’ Net: Insurance



Example Bayes’ Net: Car



Graphical Model Notation

 Nodes: variables (with domains)
 Can be assigned (observed) or unassigned 

(unobserved)

 Arcs: interactions
 Indicate “direct influence” between variables
 Formally: encode conditional independence 

(more later)

 For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

 N independent coin flips

 No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

 Variables:
 R: It rains
 T: There is traffic

 Model 1: independence

 Why is an agent using model 2 better?

R

T

R

T

 Model 2: rain causes traffic



 Let’s build a causal graphical model!
 Variables

 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Example: Traffic II



 Let’s build a causal graphical model!
 Variables

 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Example: Traffic II

R

B

T

D

L

C



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!

A

M J

EB



Bayes’ Net Semantics

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node

 A collection of distributions over X, one for each 
combination of parents’ values

 CPT: conditional probability table

 Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

 Example:

P(+cavity, +detect, -toothache)



Probabilities in BNs

 Why are we guaranteed that setting

results in a proper joint distribution?  

 Chain rule (valid for all distributions): 

 Assume conditional independences: 

 Consequence:

 Not every BN can represent every joint distribution

 The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2



Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



Example: Traffic

 Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Reverse Traffic

 Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality?

 When Bayes’ nets reflect the true causal patterns:
 Often simpler (nodes have fewer parents)
 Often easier to think about
 Often easier to elicit from experts

 BNs need not actually be causal
 Sometimes no causal net exists over the domain 

(especially if variables are missing)
 E.g. consider the variables Traffic and Drips
 End up with arrows that reflect correlation, not causation

 What do the arrows really mean?
 Topology may happen to encode causal structure
 Topology really encodes conditional independence



Size of a Bayes’ Net

 How big is a joint distribution over N 
Boolean variables?

2N

 How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

 Both give you the power to calculate

 BNs: Huge space savings!

 Also easier to elicit local CPTs

 Also faster to answer queries (coming)



Review: Conditional Independence

 X and Y are independent if

 X and Y are conditionally independent given Z

 (Conditional) independence is a property of a distribution

 Example: 



Review: Conditional Independence

 Unconditional (absolute) independence very rare, and it 
doesn’t help us make inferences about other variables.

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

 X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Review: Bayes Nets Assumptions

 Assumptions we are required to make to define the 
Bayes net when given the graph:

 Beyond the “chain rule  Bayes net” conditional 
independence assumptions

 There are often additional conditional independences

 They can be read off the graph

 Important for modeling: understand assumptions made 
when choosing a Bayes net graph



D-separation: Outline



Causal Chains

 This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

 Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

 In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains

 This configuration is a “causal chain”  Guaranteed X independent of Z given Y?

 Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Cause

 This configuration is a “common cause”  Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Project due causes both forums busy 
and office hours to be full 

 In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Office 

hours full



Common Cause

 This configuration is a “common cause”  Guaranteed X and Z independent given Y?

 Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Office 

hours full



Common Effect

 Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

 Are X and Y independent?

 Yes: the ballgame and the rain cause traffic, but 
they are not correlated

 Still need to prove they must be (try it!)

 Are X and Y independent given Z?

 No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

 This is backwards from the other cases

 Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame



Are two variables in a BN independent?

 General question: in a given BN, are two variables independent 
(given some evidence)?

 Solution: analyze the graph

 Any complex example can be broken
into repetitions of the three canonical cases



Reachability

 Recipe: shade evidence nodes, look 
for paths in the resulting graph

 Attempt 1: if two nodes are connected 
by an undirected path not blocked by 
a shaded node, they are conditionally 
independent

 Almost works, but not quite
 Where does it break?
 Answer: the v-structure at T doesn’t count 

as a link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

 Question: Are X and Y conditionally independent given 
evidence variables {Z}?
 Yes, if X and Y “d-separated” by Z
 Consider all (undirected) paths from X to Y
 No active paths = independence!

 A path is active if each triple is active:
 Causal chain A → B → C where B is unobserved (either direction)
 Common cause A ← B → C where B is unobserved
 Common effect (aka v-structure)

A → B ← C where B or one of its descendants is observed

 All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



 Query:

 Check all (undirected!) paths between        and 

 If one or more active, then independence not guaranteed

 Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

?



Example

Yes R

T

B

T’

No

No



Example

R

T

B

D

L

T’

Yes

Yes

Yes

No

No



Computing All Independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z



 Examples:

 Posterior probability

 Most likely explanation:

Inference

 Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

 We want:

 Step 1: Select the 
entries consistent 
with the evidence

 Step 2: Sum out H to get joint 
of Query and evidence

 Step 3: Normalize



Inference by Enumeration in Bayes’ Net
 Given unlimited time, inference in BNs is easy

 Reminder of inference by enumeration by example:
B E

A

MJ
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