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Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)



Review: Independence

= Two variables are independent if:
Vo,y 1 P(x,y) = P(z)P(y)
= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Va,y : Plxly) = P(x)

" Wewrite: X || YV

" |ndependence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Review: Independence?

P1(T,W)

T W P
hot sun | 0.4
hot rain | 0.1
cold sun | 0.2
cold rain | 0.3

Py (T, W)

T W P
hot sun 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
W P
sun 0.6

rain 0.4




Review: Independence

" N fair, independent coin flips:

P(X1) P(X5) P(Xp)
H |05 H |05 o H |05
T 0.5 T 0.5 T 0.5

\

—




Review: Conditional Independence

P(Toothache, Cavity, Detect)

If | have a cavity, the probability that the probe detects it
doesn't depend on whether | have a toothache:

= P(+detect | +toothache, +cavity) = P(+detect | +cavity)

The same independence holds if | don’t have a cavity:
= P(+detect | +toothache, -cavity) = P(+detect| -cavity)

Detect is conditionally independent of Toothache given
Cavity:
= P(Detect | Toothache, Cavity) = P(Detect | Cavity)

Equivalent statements:
= P(Toothache | Detect, Cavity) = P(Toothache | Cavity)
= P(Toothache, Detect | Cavity) = P(Toothache | Cavity) P(Detect | Cavity)
= One can be derived from the other using the chain rule



Review: Conditional Independence

* Unconditional (absolute) independence very rare, and it
doesn’t help us make inferences about other variables.

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= Xis conditionally independent of Y given Z Xil_Y‘Z

if and only if:
Va,y, z 1 P(x,y|z) = P(z|z)P(y|2)

or, equivalently, if and only if

Va,y.z 1 P(alz,y) = P(a]2)



Conditional Independence

= What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence

= \What about this domain: — t‘“‘}@—i——
. W
= Fire =D
= Smoke

= Alarm




Conditional Independence and the Chain Rule

= Chain rule: P(X1,X5,...Xn) = P(X)P(X| X1)P(X3]| X1, X2) ...

= Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’nets / graphical models help us express conditional independence assumptions



Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions




Net: Insurance

Example Bayes’




Example Bayes’ Net: Car

alternator fanbelt
broken broke

fuel line starter
hlocked hroke



Graphical Model Notation

(unobserved)
" Arcs: interactions
= |ndicate “direct influence” between variables

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean Toothache

direct causation (in general, they don’t!)

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned




Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence



Example: Traffic

= Variables:
= R:ltrains
= T:There is traffic

= Model 1: independence = Model 2: rain causes traffic

= Why is an agent using model 2 better?



Example: Traffic I

= Let’s build a causal graphical model!

= \ariables
= T: Traffic
= R:ltrains

= |L:Low pressure
= D: Roof drips

= B: Ballgame

= C: Cavity




Example: Traffic Il

= Let’s build a causal graphical model!

S N St

= T:Traffic
= R:ltrains X [
= |L:Low pressure
= D: Roof drips

= B:Ballgame

= C: Cavity




Example: Alarm Network

= \/ariables
= B: Burglary

h.—

°
=)

3%

= A: Alarm goes off

= M: Mary calls

= J:John calls
= E: Earthquake!




Example: Alarm Network

= \/ariables
= B: Burglary

\.,

3%

= A: Alarm goes off

= M: Mary calls

= J:John calls
= E: Earthquake!




Bayes’ Net Semantics e,

= Aset of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(X‘ﬂl .. .(ln.)

= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:

™
P(z1,z2,...2n) = [] P(=zi|parents(X,))

=1

= Example: @
Toothache @

P(+cavity, +detect, -toothache)




Probabilities in BNs e,

* Why are we guaranteed that setting

T
P(z1,22,...20) = [[ P(=i|parents(X;))
i=1

results in a proper joint distribution?

n

= Chain rule (valid for all distributions): P(z1,20,...2n) = |[ Plzilzy .. 2i—1)
i=1

= Assume conditional independences: P(xi|xq,...2_1) = P(a;|parents(X;))

T
=~ Consequence:  P(zq,25,...2n) = || P(zilparents(X;))
i=1

= Not every BN can represent every joint distribution

= The topology enforces certain conditional independencies



Example: Coin Flips

P(X1) P(X2) P(Xn)
h |05 h |05 o h |05
t 0.5 t 0.5 t 0.5

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs.



O

P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(4r, —t) =




Example: Alarm Network

Burglary

Earthquake

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a -j 0.1
-a +j 0.05
-a -] 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E | P(E)
+e | 0.002

-e | 0.998

B | E | A | P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b | -e -a 0.999




O

= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)

+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




Example: Reverse Traffic

= Reverse causality?

P(T)

+t

9/16

7/16

P(R|T)

+t

+r

1/3

2/3

+r

1/7

6/7




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)

= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(x;|lx1, ... 251) = P(xs|parents(X;))



Size of a Bayes Net

How big is a joint distribution over N = Both give you the power to calculate
Boolean variables?
5N P(X1,X2,... Xn)

= BNs: Huge space savings!

How big is an N-node net if nodes

have up to k parents? = Also easier to elicit local CPTs

O(N * 2k+1) = Also faster to answer queries (coming)




Review: Conditional Independence

X and Y are independent if

Va,y P(x,y)

X and Y are conditionally independent given Z

Va,y,z P(x,ylz)

= P(x)P(y) - -- X1Y

= P(z|z)P(y|z) —--=>» X 1Y|Z

(Conditional) independence is a property of a distrlbutlon

Example:

Alarm 1L Fire|Smoke

L‘,F', - [




Review: Conditional Independence

* Unconditional (absolute) independence very rare, and it
doesn’t help us make inferences about other variables.

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= Xis conditionally independent of Y given Z Xil_Y‘Z

if and only if:
Va,y, z 1 P(x,y|z) = P(z|z)P(y|2)

or, equivalently, if and only if

Va,y.z 1 P(alz,y) = P(a]2)



Review: Bayes Nets Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(xz;|z1---xi_1) = P(x;|parents(X;))

= Beyond the “chain rule > Bayes net” conditional
independence assumptions

= There are often additional conditional independences

= They can be read off the graph

" |mportant for modeling: understand assumptions made

when choosing a Bayes net graph



D-separation: Outline




Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

1

= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no

traffic
X: Low pressure Y: Rain Z: Traffic
" |n numbers:
P(x,y,z) = P(x)P(y|lz)P(z|y) P(+y [ +x)=1,P(-y | -x)=1,

P(+2 | +y)=1,P(-z|-y)=1



Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?
Lf"‘-\ Yo ratis Yar- P(z,y, z)
1 P(zl,y) =
P(z,y)
4) w_.) ) _ P@)P)PCly)
el P(2)P(yl)
X: Low pressure Y: Rain Z: Traffic — P(Z|y)
Yes!

P(x,y,z) = P(z)P(y|lz)P(z[y) = Evidence along the chain “blocks” the

influence



Common Cause

. o o o 11 7
» This configurationisa common cause

Y: Project Project
Due!
due

&
@@

X: Forums e —— :
busy __E ;_-j Z: Office
hours full

P(z,y,z) = P(y)P(z|y) P(z|y)

" Guaranteed X independentof Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Project due causes both forums busy
and office hours to be full

®" |n numbers:

P(+x | +y)=1,P(-x]|-y)=1,
P(+z | +y)=1,P(-z]|-y)=1



Common Cause

. o o o 11 7
= This configuration isa common cause

Y: Project Project \
Due!
due L §

“@,
&)

Z: Office

X: Forums f_
E hours full

busy
P(z,y,z) = P(y)P(z|y) P(z|y)

= Guaranteed X and Z independent given Y?

P(x,y,z)
P(x,y)

P(z|lz,y) =

_ P@)P(zly) P(z]y)
P(y) P(z|y)

= P(z|y)
Yes!

= Observing the cause blocks influence
between effects.



Common Effect

= Last configuration: two causesofone = Are Xand Y independent?

effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

. they are not correlated
X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are Xand Y independent given Z?
@ @ = No: seeing traffic puts the rain and the ballgame in

“h competition as explanation.

@ = This is backwards from the other cases
\
2

e = QObserving an effect activates influence between
IRYEN-

aal

Z: Traffic

possible causes.

M N



Are two variables in a BN independent?

= General question: in a given BN, are two variables independent

(given some evidence)?
= Solution: analyze the graph @ E Pv@%@

S

= Any complex example can be broken @3@%@
into repetitions of the three canonical cases @

= =

L’:_'_‘Ib A



Reachability

= Recipe: shade evidence nodes, look
for paths in the resulting graph

= Attempt 1: if two nodes are connected 6 e
by an undirected path not blocked by
a shaded node, they are conditionally

independent Q
L,‘--\
= Almost works, but not quite e
. ff‘/{\—* ) A v L'{,_..F- \j
* Where does it break? EE L
= Answer: the v-structure at T doesn’t count sy / [T / Y

as a link in a path unless “active”




Active / Inactive Paths

= Question: Are X and Y conditionally independent given  Active Triples Inactive Triples

evidence variables {Z}?

= Yes, if Xand Y “d-separated” by Z
= Consider all (undirected) paths from X to Y
= No active paths = independence!

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A < B — C where B is unobserved
= Common effect (aka v-structure)
A — B «— C where B or one of its descendants is observed

= All it takes to block a path is a single inactive segment

{9 §



D-Separation

= Query: Xz AL Xj‘{Xkla °°°7an} ?

= Check all (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed
X; jﬂ% X] ‘{Xkl JIERES an}

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X L XiH{ Xkys oo Xk, }




Example

RI B Yes
R 1 B|T No

RAU BIT"  No



Example

L1LTT Yes
L1 B Yes
L1 B|T No

L1 B|T No

LI B|T,R Yes




Computing All Independences

MPUTE ALL THE
%l?\DEPEN DENCES!

S
6%
hel
TS



Inference

" |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1 =e1,... B, = ¢g)

= Most likely explanation:

argmax, P(Q =q|E1 =e7...)




Inference by Enumeration

* Works fine with

=  General case: = We want: multiple query
» Evidencevariables: FE1...Ep=e1...¢; X1, X0,...Xn variables, too
» Query* variable: “ ’
Query Q All variables P(Qlel .. 'ek)

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

x| P
-3 0.05 ><
@ -1 0.25
‘ & 0.07 2 :

1 | o2 | -
5 \ 0 (
P(Q,e1...e) = > P(g}hl-uhr;el--*eﬁ) .

h Hj-r VT
e XI:XQ:--*XH P(Q‘Elﬁk) _ ZP(QaPlPR)

Z=Y PQe - e)




Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B | +j,+m) xB P(B,+j,+m) °
—ZP (B,e,a,+j,+m)
= ZP P(a|B,e)P(+j|a)P(+mla)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +¢e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B,—e)P(+j| — a)P(+m| — a)
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