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Bayes’ Nets

Read AIMA 
Chapter 13 “Probabilistic Reasoning” 

(Sections 13.1, 13.2 and 13.3)



Probabilistic Models

 Models describe how (a portion of) the world works

 Models are always simplifications
 May not account for every variable
 May not account for all interactions between variables
 “All models are wrong; but some are useful.”

– George E. P. Box

 What do we do with probabilistic models?
 We (or our agents) need to reason about unknown 

variables, given evidence
 Example: explanation (diagnostic reasoning)
 Example: prediction (causal reasoning)



 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption

 Empirical joint distributions: at best “close” to independent

 What could we assume for {Weather, Traffic, Cavity, Toothache}?

Review: Independence



Review: Independence?
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Review: Independence

 N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5



Review: Conditional Independence

 P(Toothache, Cavity, Detect)

 If I have a cavity, the probability that the probe detects it 
doesn't depend on whether I have a toothache:
 P(+detect | +toothache, +cavity) = P(+detect | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+detect | +toothache, -cavity) = P(+detect| -cavity)

 Detect is conditionally independent of Toothache given 
Cavity:
 P(Detect | Toothache, Cavity) = P(Detect | Cavity)

 Equivalent statements:
 P(Toothache | Detect , Cavity) = P(Toothache | Cavity)
 P(Toothache, Detect | Cavity) = P(Toothache | Cavity) P(Detect | Cavity)
 One can be derived from the other using the chain rule



Review: Conditional Independence

 Unconditional (absolute) independence very rare, and it 
doesn’t help us make inferences about other variables.

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

 X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

 What about this domain:

 Traffic
 Umbrella
 Raining



Conditional Independence

 What about this domain:

 Fire
 Smoke
 Alarm



Conditional Independence and the Chain Rule

 Chain rule: 

 Trivial decomposition:

 With assumption of conditional independence:

 Bayes’nets / graphical models help us express conditional independence assumptions



Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables 
as our probabilistic models:
 Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
 Hard to learn (estimate) anything empirically about more 

than a few variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions



Example Bayes’ Net: Insurance



Example Bayes’ Net: Car



Graphical Model Notation

 Nodes: variables (with domains)
 Can be assigned (observed) or unassigned 

(unobserved)

 Arcs: interactions
 Indicate “direct influence” between variables
 Formally: encode conditional independence 

(more later)

 For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

 N independent coin flips

 No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

 Variables:
 R: It rains
 T: There is traffic

 Model 1: independence

 Why is an agent using model 2 better?

R

T

R

T

 Model 2: rain causes traffic



 Let’s build a causal graphical model!
 Variables

 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Example: Traffic II



 Let’s build a causal graphical model!
 Variables

 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Example: Traffic II

R

B

T

D

L

C



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!

A

M J

EB



Bayes’ Net Semantics

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node

 A collection of distributions over X, one for each 
combination of parents’ values

 CPT: conditional probability table

 Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions

 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

 Example:

P(+cavity, +detect, -toothache)



Probabilities in BNs

 Why are we guaranteed that setting

results in a proper joint distribution?  

 Chain rule (valid for all distributions): 

 Assume conditional independences: 

 Consequence:

 Not every BN can represent every joint distribution

 The topology enforces certain conditional independencies



Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn



Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2



Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



Example: Traffic

 Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Example: Reverse Traffic

 Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16



Causality?

 When Bayes’ nets reflect the true causal patterns:
 Often simpler (nodes have fewer parents)
 Often easier to think about
 Often easier to elicit from experts

 BNs need not actually be causal
 Sometimes no causal net exists over the domain 

(especially if variables are missing)
 E.g. consider the variables Traffic and Drips
 End up with arrows that reflect correlation, not causation

 What do the arrows really mean?
 Topology may happen to encode causal structure
 Topology really encodes conditional independence



Size of a Bayes’ Net

 How big is a joint distribution over N 
Boolean variables?

2N

 How big is an N-node net if nodes 
have up to k parents?

O(N * 2k+1)

 Both give you the power to calculate

 BNs: Huge space savings!

 Also easier to elicit local CPTs

 Also faster to answer queries (coming)



Review: Conditional Independence

 X and Y are independent if

 X and Y are conditionally independent given Z

 (Conditional) independence is a property of a distribution

 Example: 



Review: Conditional Independence

 Unconditional (absolute) independence very rare, and it 
doesn’t help us make inferences about other variables.

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

 X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Review: Bayes Nets Assumptions

 Assumptions we are required to make to define the 
Bayes net when given the graph:

 Beyond the “chain rule  Bayes net” conditional 
independence assumptions

 There are often additional conditional independences

 They can be read off the graph

 Important for modeling: understand assumptions made 
when choosing a Bayes net graph



D-separation: Outline



Causal Chains

 This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

 Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

 In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains

 This configuration is a “causal chain”  Guaranteed X independent of Z given Y?

 Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Cause

 This configuration is a “common cause”  Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Project due causes both forums busy 
and office hours to be full 

 In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Office 

hours full



Common Cause

 This configuration is a “common cause”  Guaranteed X and Z independent given Y?

 Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Office 

hours full



Common Effect

 Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

 Are X and Y independent?

 Yes: the ballgame and the rain cause traffic, but 
they are not correlated

 Still need to prove they must be (try it!)

 Are X and Y independent given Z?

 No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

 This is backwards from the other cases

 Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame



Are two variables in a BN independent?

 General question: in a given BN, are two variables independent 
(given some evidence)?

 Solution: analyze the graph

 Any complex example can be broken
into repetitions of the three canonical cases



Reachability

 Recipe: shade evidence nodes, look 
for paths in the resulting graph

 Attempt 1: if two nodes are connected 
by an undirected path not blocked by 
a shaded node, they are conditionally 
independent

 Almost works, but not quite
 Where does it break?
 Answer: the v-structure at T doesn’t count 

as a link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

 Question: Are X and Y conditionally independent given 
evidence variables {Z}?
 Yes, if X and Y “d-separated” by Z
 Consider all (undirected) paths from X to Y
 No active paths = independence!

 A path is active if each triple is active:
 Causal chain A → B → C where B is unobserved (either direction)
 Common cause A ← B → C where B is unobserved
 Common effect (aka v-structure)

A → B ← C where B or one of its descendants is observed

 All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



 Query:

 Check all (undirected!) paths between        and 

 If one or more active, then independence not guaranteed

 Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

?



Example

Yes R

T

B

T’

No

No



Example

R

T

B

D

L

T’

Yes

Yes

Yes

No

No



Computing All Independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z



 Examples:

 Posterior probability

 Most likely explanation:

Inference

 Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

 We want:

 Step 1: Select the 
entries consistent 
with the evidence

 Step 2: Sum out H to get joint 
of Query and evidence

 Step 3: Normalize



Inference by Enumeration in Bayes’ Net
 Given unlimited time, inference in BNs is easy

 Reminder of inference by enumeration by example:
B E

A

MJ
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