Reinforcement Learning

L

il

Slides courtesy of Dan Klein and Pieter Abbeel

University of California, Berkeley

‘& Penn Engineering

Double Bandits

ngmeermg

Penn E

)

Double-Bandit MDP

o Actions: Blue, Red 4 No discount

o States: Win, Lose 0.25 $0 100 time steps
Both states have
the same value

@ Penn Engineering

Offline Planning

o Solving MDPs is offline planning 4 No discount
- You determine all quantities through computation 100 time steps
- You need to know the details of the MDP Both states have
- You do not actually play the game! 9 the same value

-~

Value
Play Red 150
Play Blue 100

o /

@ Penn Engineering

Let's Play!

S2 S2 S0 S2 S2

S2 $2 SO0 SO SO

o0
=
L
mo

Penn E

e

51
1.0

| Red's win chance is different.
?? $0

o=

.

- Rules changed

Online Planning

50
=
s
=

& Penn E

Let's Play!

SO SO SO S22 SO

S2 SO0 SO SO SO

o0
=
L
mo

Penn E

e

What Just Happened?

- That wasn’t planning, it was learning!

- There was an MDP, but you couldn’t solve it with just computation
- You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up

Specifically, reinforcement learning

Exploration: you have to try unknown actions to get information
Exploitation: eventually, you have to use what you know

Regret: even if you learn intelligently, you make mistakes
Sampling: because of chance, you have to try things repeatedly
Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

Agent

State: s

Reward: r Actions: a

What’s the difference
between Fully Observable

MDPs and Reinforcement Environment

Learning at this point in
the cycle?

o Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

@ Penn Engineering

Reinforcement Learning

o Still assume a Markov decision process (MDP):
A set of statess € S

A set of actions (per state) A ‘
A model T(s,a,s’) - TS

- A reward function R(s,a,s’)

Overheated

o Still looking for a policy 7(s)

o New twist: don’t know T or R
- l.e. we don’t know which states are good or what the actions do
- Must actually try actions and states out to learn

@ Penn Eng]'neering

Online Learning

Offline Solution

.

Offline (MDPs) vs. Online (RL)

2.0
=
4
=
=

Penn E

Model-Based Learning

50
=
s
=

Penn E

e

Model-Based Learning

o Model-Based ldea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
- Count outcomes s’ for each's,a 7(s, qa,s)
- Normalize to give an estimate of
- Discover each R(s,a,s’) when we experience (s, a, s

o Step 2: Solve the learned MDP
- For example, use value iteration, as before

@ Penn Engineering

‘& Penn Engineering

Example: Model-Based Learning
Observed Episodes (Training)

Input Policy &

Assume:y=1

Episode 1

_

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 3

_

(E, north, C, -1

C,east, D, -1
D, exit,

X, +10

~

J

Episode 2

g B, east, C, -1

_

~
C, east, D, -1

Learned Model

T(s,a,s")

(T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

D, exit, X, +10)

Episode 4

_

g E, north, C, -1

~
C, east, A, -1

A, exit, X, —10)

_

R(s,a,s")

4 R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

_

\

J

ing

Model-Free Learn

DOUVBLE

32./30
QR NOTHING

ng]neerlng

Penn E

Passive Reinforcement Learning

ng]neerlng

Penn E

e

Passive Reinforcement Learning

o Simplified task: policy evaluation
Input: a fixed policy n(s)
You don’t know the transitions T(s,a,s’)
You don't know the rewards R(s,a,s’)
Goal: learn the state values

> In this case:
Learner is “along for the ride”
No choice about what actions to take
- Just execute the policy and learn from experience
This is NOT offline planning! You actually take actions in the world.

‘& Penn Engineering

Direct Evaluation

- Goal: Compute values for each state
under

- |ldea: Average together observed sample
values
Act accordingto «t

Every time you visit a state, write down what
thebsum of discounted rewards turned out
to be

Average those samples

o This is called direct evaluation

@ Penn Engineering

‘& Penn Engineering

Example: Direct Evaluation

Input Policy &

Observed Episodes (Training)

Episode 1

Assume:y=1

_

g B, east, C, -1

~
C, east, D, -1

D, exit, X, +10)

Episode 3

_

(E, north, C, -1

~
C,east, D, -1

Episode 2

D, exit, X, +10)

_

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

_

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

J

Output Values

Problems with Direct Evaluation

o What’s good about direct evaluation?
- It’s easy to understand
- It doesn’t require any knowledge of T, R

- It eventually computes the correct average
values, using just sample transitions

o What bad about it?

- |t wastes information about state connections
- Each state must be learned separately If B and E both go to C

- So, it takes a long time to learn under this policy, how can
their values be different?

‘& Penn Engineering

Example: Expected Age

Goal: Compute expected age of CIS 421/521 students

d Known P(A)

E[A] = ZP(G) g =001x42+...

Without P(A), instead collect samples [a,, a,, ... a]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this > _ num(a) Why does this
Pla) = ———
work? Because N E[A] ~ i Za’ work? Because
eventually you A TN L= samples appear
learn the right EA] ~ Z P(a)-a ‘ with the right
model. @ / k frequencies.

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:

Each round, replace V with a one-step-look-ahead layer over V mi(s)

Vo (s) =0 @® s (s

Vit 1(s) <= > _T(s,n(s), sSH[R(s,7(s),s) + vV (s))] A,S‘;"T/c(s),s’
s/ A S

This approach fully exploited the connections between the states

Unfortunately, we need T and R to do it!

o Key question: how can we do this update to V without knowing T and R?
In other words, how to we take a weighted average without knowing the weights?

@ Penn Engineering

Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:
Vitp1(s) ¢ S T(s,m(s),) R(s, m(s), s') + 4V ()]

S

o ldea: Take samples of outcomes s’ (by doing the action!) and average
sample; = R(s,m(s),s7) + ”)/V]:(Sll)
samples = R(s,m(s),s5) + ’}/V]gT(S,Q)

samplep, = R(s,m(s), S;@) + ”YV];T(S%,)

1
Vkﬁ-l—l (3) — = Z sample; Almost! But we can’t
n-y rewind time to get sample

after sample from state s.
@ Penn Engineering

Temporal Difference Learning

o Bigidea: learn from every experience! S
Update V(s) each time we experience a transition (s, a, s’, r)

Likely outcomes s’ will contribute updates more often n(s)
s, 1(s)
o Temporal difference learning of values
Policy still fixed, still doing evaluation!
Move values toward value of whatever successor occurs: running VANEY

average
Sample of V(s): sample = R(s,m(s),s) +~VT™(s)
Update to V(s): VT(s) < (1 —a)V"(s) + (a)sample
Same update: V7T(s) + V™(s) + a(sample — V7 (s))

@ Penn Engineering

Exponential Moving Average

- Exponential moving average
The running interpolation update: Z, = (1 — &) - Zp—1 + @ -z,

Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zpo+...
I+(1-a)+(1—-a)2+...
Forgets about the past (distant past values were wrong anyway)

Ty =

- Decreasing learning rate (alpha) can give converging averages

@ Penn Engineering

Example: Temporal Difference Learning

States Observed Transitions
[B, east, C, -2] [C, east, D, -2]

o]0l [0

V7(s) = (1 = a)V7(s) +a |R(s,m(s),s) +4V7(s")

Assume:y=1,a=1/2

@ Penn Engineering

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:

w(s) = arg max Q(s,a)

Q(s,a) = ZT(S, a,s') [R(S, a,s') + ny(s’)]

o ldea: learn Q-values, not values

o Makes action selection model-free too!

@ Penn Engineering

inforcement Learning

Active Re

.

o0
=
w
()
>

Penn E

[

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’)
You choose the actions now
Goal: learn the optimal policy / values

o> In this case:
Learner makes choices!
Fundamental tradeoff: exploration vs. exploitation
This is NOT offline planning! You actually take actions in the
world and find out what happens...

@ Penn Engineering

Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
Start with V,(s) = 0, which we know is right
Given V,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

o But Q-values are more useful, so compute them instead
Start with Q,(s,a) = 0, which we know is right
Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,0) ¢ Y T(s,0,5) |R(s,a,5) +7 maxQy(s',a)

S

@ Penn Engineering

Q-Learning

o Q-Learning: sample-based Q-value iteration
Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

- Learn Q(s,a) values as you go
Receive a sample (s,a,5',r)
Consider your old estimate: Q(s,a)
Consider your new sample estimate:

sample = R(s,a,s’) +~ max Q(s',a")
a

Incorporate the new estimate into a running
average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

‘& Penn Engineering

Q-Learning Properties

- Amazing result: Q-learning converges to oPtimaI
policy -- even if you're acting suboptimally!

o This is called off-policy learning

- Caveats:

You have to explore enough

You have to eventually make the learning rate
small enough

... but not decrease it too quickly

Basically, in the limit, it doesn't matter how you select
actions (!)

‘& Penn Engineering

Exploration vs. Exploitation

Penn Engineering

How to Explore?

o Several schemes for forcing exploration
- Simplest: random actions (e-greedy)
- Every time step, flip a coin
- With (small) probability €, act randomly
- With (large) probability 1-¢, act on current policy

@ Penn Engineering

How to Explore?

o Several schemes for forcing exploration

- Simplest: random actions (e-greedy)
- Every time step, flip a coin
- With (small) probability €, act randomly
- With (large) probability 1-¢, act on current policy

- Problems with random actions?

- You do eventually explore the space, but keep
thrashing around once learning is done

« One solution: lower ¢ over time
- Another solution: exploration functions

@ Penn Engineering

Exploration Functions

- When to explore?

Random actions: explore a fixed amount

Better idea: explore areas whose badness
(yet) established, eventually stop exploring

- Exploration function

Takes a value estimate u and a visit count i
returns an optimistic utility, e.g. f(u,n) =u+k/n

Note: this propagates the “bonus” back to states that lead to unknown
states as well!

Regular Q-Update: Q(s,a) <o R(s,a,s") +~ max Q(s',a')
Modified Q-Update: Q(s,a) < R(s,a,s’) +~ max f(Q(s',d), N(s,a"))

@ Penn Eng]'neering

Regret

o Evenifyou learn the optimal policy,
you still make mistakes along the
way!

o Regretis a measure of your total
mistake cost: the difference
between your (expected) rewards,
including youthful suboptimality,
and optimal (expected) rewards

o Minimizing regret goes beyond
learning to be optimal - it requires
optimally learning to be optimal

o Example: random exploration and
exploration functions both end up
optimal, but random exploration
has higher regret

‘& Penn Engineering

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all g-values

o In realistic situations, we cannot possibly learn
about every single state!
= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

o Instead, we want to generalize:

= Learn about some small number of training states
from experience

= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and
we'll see it over and over again

‘& Penn Engineering

Flashback: Evaluation Functions

o Evaluation functions score non-terminals in depth-limited search
10t eX
22/ [10212

Black to move . AN AN White to move

White slightly better Black winning

o ldeal function: returns the actual minimax value of the position
o In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ... + wnfn(s)

o e.g. f1(s) = (num white queens - num black queens), etc.

@ Penn Engineering

Linear Value Functions

o Using a feature representation, we can write a g function (or value
function) for any state using a few weights:

V(s) = wif1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twafa(s,a)+...+wnfrn(s,a)

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

@ Penn Engineering

Approximate Q-Learning
Qs,0) = wifa(s,) twfa(s, @)+ Funalsia) |

o Q-learning with linear Q-functions:
transition = (s,a,r,s’)
r+ymaxQ(sa)| — Qs,0)

Q(s,a) — Q(s,a) + « [difference] Exact Q's

w; «— w; + « [difference] f;(s,a) Approximate Qs

difference =

o Intuitive interpretation:
Adjust weights of active features

E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

o Formal justification: online least squares
@PelmEngineeﬁng

Chapter 22 - Reinforcement Learning
Sections 22.1-22.5

Chapter 17.3 - Bandit Problems

(These topics won't be on Tuesday'’s
midterm)

¢ ¢®
Reading :pi?.-t- ‘J:,a.:(;] Ui Eh i u;
iy 3 e
fr=s) K tected(hen 1 ¢
an Unif] else
ce(eve } Depth
B

B 6 ==
th
AN _‘a
N

' I.i-T".'_ ~ ISHE{

Stuart

Russell SAFtTicIal Intelligence

Peter

Norvig A Vodern Approach
P Fourth Edition

F?;’I-’e.l’ul Enédneering

	Reinforcement Learning
	Double Bandits
	Double-Bandit MDP
	Offline Planning
	Let’s Play!
	Online Planning
	Let’s Play!
	What Just Happened?
	Reinforcement Learning
	Reinforcement Learning
	Offline (MDPs) vs. Online (RL)
	Model-Based Learning
	Model-Based Learning
	Example: Model-Based Learning
	Model-Free Learning
	Passive Reinforcement Learning
	Passive Reinforcement Learning
	Direct Evaluation
	Example: Direct Evaluation
	Problems with Direct Evaluation
	Example: Expected Age
	Why Not Use Policy Evaluation?
	Sample-Based Policy Evaluation?
	Temporal Difference Learning
	Exponential Moving Average
	Example: Temporal Difference Learning
	Problems with TD Value Learning
	Active Reinforcement Learning
	Active Reinforcement Learning
	Detour: Q-Value Iteration
	Q-Learning
	Q-Learning Properties
	Exploration vs. Exploitation
	How to Explore?
	How to Explore?
	Exploration Functions
	Regret
	Approximate Q-Learning
	Generalizing Across States
	Flashback: Evaluation Functions
	Linear Value Functions
	Approximate Q-Learning
	Slide Number 45

