
CIS 521:
ARTIFICIAL INTELLIGENCE

Harry Smith

Expectimax
and Utilities

Many of today’s slides are courtesy of Dan Klein and
Pieter Abbeel of University of California, Berkeley

CIS 550 | Property of Penn Engineering | 2

Uncertain Outcomes

CIS 521 | 9

CIS 550 | Property of Penn Engineering | 3CIS 521 | 10

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

chance

CIS 550 | Property of Penn Engineering | 4

Expectimax Search
o Why wouldn’t we know what the result of an action will be?

▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the opponent isn’t optimal
▪ Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under optimal
play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is

uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

o Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

CIS 521 | 11

10 4 5 7

max

chance

10 10 9 100

CIS 550 | Property of Penn Engineering | 5

Expectimax Pseudocode

CIS 521 | 12

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

CIS 550 | Property of Penn Engineering | 6

Expectimax Pseudocode

CIS 521 | 13

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v
8 24 -12

1/2
1/3

1/6

𝑣𝑣 = 1
2
⋅ (8) + 1

3
⋅ (24)+ 1

6
⋅ (−12)

CIS 550 | Property of Penn Engineering | 7CIS 521 | 14

12 9 6 03 2 154 6

CIS 550 | Property of Penn Engineering | 8CIS 521 | 15

12 93 2

CIS 550 | Property of Penn Engineering | 9CIS 521 | 16

…

…492 362

400 300

Estimate of true expectimax value (which would
require a lot of work to compute)

CIS 550 | Property of Penn Engineering | 10

Probabilities

CIS 521 | 17

CIS 550 | Property of Penn Engineering | 11

Probabilities
o A random variable represents an event whose outcome is unknown
o A probability distribution is an assignment of weights to outcomes

o Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: 𝑃𝑃 𝑇𝑇 = none = 0.25, 𝑃𝑃 𝑇𝑇 = light = 0.50, 𝑃𝑃 𝑇𝑇 = heavy = 0.25

o Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

o As we get more evidence, probabilities may change:
▪ 𝑃𝑃 𝑇𝑇 = heavy = 0.25, 𝑃𝑃 𝑇𝑇 = heavy | Hour = 8am = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

CIS 521 | 18

0.25

0.50

0.25

CIS 550 | Property of Penn Engineering | 12

Probabilities
o The expected value of a function of a random variable is the average, weighted by

the probability distribution over outcomes
o Example: How long to get to the airport?

CIS 521 | 19

0.25 0.50 0.25Probability:

20
min

30
min

60
min

Time:
35

minx x x+ +

CIS 550 | Property of Penn Engineering | 13

What Probabilities to Use?

o In expectimax search, we have a probabilistic model of how the
opponent (or environment) will behave in any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of

computation
▪ We have a chance node for any outcome out of our control:

opponent or environment
▪ The model might say that adversarial actions are likely!

o For now, assume each chance node magically comes along with
probabilities that specify the distribution over its outcomes

CIS 521 | 20

Having a probabilistic
belief about another

agent’s action does not
mean that the agent is

flipping any coins!

CIS 550 | Property of Penn Engineering | 14

o Objectivist / frequentist answer:
▪ Averages over repeated experiments
▪ E.g. empirically estimating P(rain) from historical observation
▪ Assertion about how future experiments will go (in the limit)
▪ New evidence changes the reference class
▪ Makes one think of inherently random events, like rolling dice

o Subjectivist / Bayesian answer:
▪ Degrees of belief about unobserved variables
▪ E.g. an agent’s belief that it’s raining, given the temperature
▪ E.g. agent’s belief how an opponent will behave, given the state
▪ Often learn probabilities from past experiences (more later)
▪ New evidence updates beliefs (more later)

CIS 521 | 21

CIS 550 | Property of Penn Engineering | 15

Quiz: Informed Probabilities
o Let’s say you know that your opponent is actually running a depth 2 minimax, using

the result 80% of the time, and moving randomly otherwise
o Question: What tree search should you use?

CIS 521 | 22

0.1
0.9

 Answer: Expectimax!
 To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent
 This kind of thing gets very slow very quickly
 Even worse if you have to simulate your

opponent simulating you…
 … except for minimax, which has the nice

property that it all collapses into one game tree

CIS 550 | Property of Penn Engineering | 16

o Dice rolls increase b: 21 possible rolls with 2 dice
▪ Backgammon ≈ 20 legal moves
▪ Depth 2 20 × 21 × 20 3 = 1.2 × 109

o As depth increases, probability of reaching a given search node
shrinks
▪ So usefulness of search is diminished
▪ So limiting depth is less damaging
▪ But pruning is trickier…

o Historic AI: TDGammon uses depth-2 search + very good evaluation
fuanction + reinforcement learning world-champion level play

o 1st AI world champion in any game!

CIS 521 | 23

CIS 550 | Property of Penn Engineering | 17

o E.g. Backgammon
o Expectiminimax

▪ Environment is an extra “random
agent” player that moves after each
min/max agent

▪ Each node computes the appropriate
combination of its children

CIS 521 | 24

Max nodes

Chance nodes

Min nodes

CIS 421/521:
ARTIFICIAL INTELLIGENCE
CIS 421/521:
ARTIFICIAL INTELLIGENCE

Markov
Decision
Processes

Navigating an Asteroid Field

o Suppose we have a fully-observable 4x3
environment with goal states.

o The millennium falcon begins in the start
state and picks an action at each time
step.

o Actions: Up, Down, Left, Right
o The game terminates when it reaches a

goal state (+1 or -1).
o If the environment were deterministic,

the solution would be easy:
o [Up, Up, Right, Right, Right]

1 2 3 4

1

2

3

–1–1

+1

Navigating an Asteroid Field

o Instead of making the environment
deterministic, we will make it stochastic.

o If the Falcon selects the action Up then it
only moves up 80% of the time.

o 10% of the time the weird gravity fields
cause it to veer off to the left or right.

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

–1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the
millennium falcon reaches the
intended goal?

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

–1–1

+1

Navigating an Asteroid Field
o For action sequence

o [Up, Up, Right, Right, Right],
o what’s the probability that the millennium

falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

0.8 –1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the millennium
falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

0.8 * 0.8 –1–1

+1

Navigating an Asteroid Field
o For action sequence

o [Up, Up, Right, Right, Right],
o what’s the probability that the millennium

falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

0.8 * 0.8

Action:
Right

* 0.8 –1–1

+1

Navigating an Asteroid Field
o For action sequence

o [Up, Up, Right, Right, Right],
o what’s the probability that the millennium

falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

0.8 * 0.8

Action:
Right

* 0.8 * 0.8 –1–1

+1

Navigating an Asteroid Field
o For action sequence

o [Up, Up, Right, Right, Right],
o what’s the probability that the millennium

falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

0.8 * 0.8

Action:
Right

* 0.8 * 0.8 * 0.8

= 0.32768

–1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the millennium
falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

–1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the millennium
falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

0.1 –1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the millennium
falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

0.1 * 0.1 –1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the millennium
falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

0.1 * 0.1

Action:
Right

* 0.1 –1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the millennium
falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

0.1 * 0.1

Action:
Right

* 0.1 * 0.1 –1–1

+1

Navigating an Asteroid Field
o For action sequence

o [Up, Up, Right, Right, Right],
o what’s the probability that the millennium

falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

0.1 * 0.1

Action:
Right

* 0.1 * 0.1 * 0.8

= 0.00008

–1–1

+1

Navigating an Asteroid Field

o For action sequence
o [Up, Up, Right, Right, Right],

o what’s the probability that the millennium
falcon reaches the intended goal?

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

Action:
Right

= 0.32776

–1–1

+1

0.32768 + 0.00008 The odds of
successfully navigating

an asteroid field

Stochastic Transition Model

o In our search algorithms so far, the
transition model was deterministic and
described the outcome of each action in
each state.

o The transition function is sometimes
written as T(s, a, s’), or explicitly as a
probability:

The probability of arriving in state s’

given that we are in state s and
we selected action a

p(s’ | s, a)

Action: Up

0.8

0.1 0.1

Stochastic Transition Model

o In our search algorithms so far, the
transition model was deterministic and
described the outcome of each action in
each state.

o The transition function is sometimes
written as T(s, a, s’), or explicitly as a
probability:

p(s’ | s, a)

Transitions are Markovian:
the probability of arriving in s’

only depends on s and not
the history of earlier states.

Action: Up

0.8

0.1 0.1
Andrey Markov (1856-

1922)

Reward function

o We will specify a utility or reward function for the agent.
o The “rewards“ can be positive or negative but are bounded by some maximum value.
o Because the decision process is sequential, we must specify the utility function on a

sequence of states and actions.
o Instead of only giving a reward at the goal states, the agent can receive a reward at each

time step, based on its transition from s to s’ via action a.
o This is defined by a reward function
o R(s, a, s’)
o For example, we could give the Millennium Falcon a small negative reward of -0.04 for every

transition except for entering the terminal states (+1 for entering the planet’s orbit or -1 for
smashing into an asteroid).

o The rewards are additive, so if the Millennium Falcon takes 4 steps before entering the
planet's orbit, it gets -0.04 + -0.04 + -0.04 + -0.04 + 1 = 0.84 for that solution.

Markov Decision Process

o A Markov decision process or MDP is
• a sequential decision problem
• for a fully observable environment
• with a stochastic transition model
• that has additive rewards

o MDPs are non-deterministic search
problems. One way of solving them is via
expectimax search.

12 9 6 03 2 154 6

Expectimax node: outcome is
uncertain. In expectimax search

we calculate their expected utilities.

Markov Decision Process

o To find a solution to an MDP, you need to define the following things:
• A set of states s ∈ S
• A set of actions a ∈ A
• A transition function T(s, a, s’)

▪ Probability that executing action a in s will lead to s’ P(s’ | s, a)
▪ The probability is called the model

• A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

• An initial state s0

• Optionally, one or more terminal states

Solution == Policy

o In search problems a solution was a
sequence of action that corresponded to
the shortest path.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Policy 𝝿𝝿 tells the agent what action
to take at state s.

This is an example
policy for a grid world

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Even though the policy told me to go
right here, there’s no guarantee that me
picking the action Right will result in me

moving right. It’s stochastic!

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Solution == Policy

o In search problems a solution was a plan: a
sequence of action that corresponded to
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs
we cannot simply give a sequence of
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

We will use 𝝿𝝿* to
denote the

optimal policy.

Policies and Rewards
o Even if the same policy is executed multiple times by the

agent, this may lead to different sequence of states and
actions (environment history), and thus a different score
under the reward function.

o Therefore we need to compute the expected utility of all
the possible paths generated by a policy.

–1

+1

r < -1.65

–1

+1

-0.03 < r < 0

ç

–1

+1

r > 0

–1

+1

r = -0.04

r is the reward
per action

Sequences of Rewards
o The performance of an agent in an MDP is the sum

of the rewards for the transitions it takes.

o Uh([s0, a0, s1, a1 …, sn])
ç

–1

+1

r > 0

Bounce around forever,
and avoid the exits …

infinite rewards!!

Utility function on an
environment history.

Sequence of states
and actions

= R(s0, a0, s1) + R(s1, a1, s2) + … + R(sn-1, an-1, sn)

Utilities of Sequences

Slides courtesy of Dan Klein and Pieter Abbeel
University of California, Berkeley

Utilities of Sequences

o What preferences should an agent have over reward
sequences?

o More or less?

o Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting
o It’s reasonable to maximize the sum of rewards
o It’s also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting
o How to discount?

▪ Each time we descend a level, we
multiply in the discount once

o Why discount?
▪ Sooner rewards probably do have

higher utility than later rewards
▪ Also helps our algorithms converge

o Example: discount of 0.5
▪ U([1,2,3]) = 0.50*1 + 0.51*2 + 0.52*3

= 1*1 + 0.5*2 + 0.25*3
▪ U([1,2,3]) < U([3,2,1])

Stationary Preferences
o Theorem: if we assume stationary preferences:

o Then: there are only two ways to define utilities
▪ Additive utility:

▪ Discounted utility:

Infinite Utilities?!
 Problem: What if the game lasts forever? Do we get infinite

rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (π depends on time left)

 Discounting: use 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will
eventually be reached (like “overheated” for racing)

Recap: Defining MDPs
o Markov decision processes:

▪ Set of states S
▪ Start state s0
▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount γ)

o MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’

Example Hyperdrive MDP
The Millennium Falcon needs to travel far far away, quickly
Three states: Cruising, Hyperspace, Crashed
Two actions: Maintain speed, Punch it
Going faster gets double reward

Cruising

Hyperspace

Crashed

Punch It

Punch It

Maintain

Maintain

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

MDP Search Trees
o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

s,a,s’

s is a state

(s, a) is a q-state

(s,a,s’) is called a transition
T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

Hyperdrive Search Tree

+1 +2 +2

+1 +1 +1 +2 +2 +2 +2 +1 -10

Optimal Quantities
 The value (utility) of a state s:

V*(s) = expected utility starting in s and
acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

 The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Values of States

o Fundamental operation: compute the (expectimax) value of a state
▪ Expected utility under optimal action
▪ Average sum of (discounted) rewards
▪ This is just what expectimax computed!

o Recursive definition of value:

a

s

s, a

s,a,s’
s’

Racing Search Tree

Racing Search Tree

Racing Search Tree
o We’re doing way too much

work with expectimax!

o Problem: States are repeated
▪ Idea: Only compute needed

quantities once

o Problem: Tree goes on
forever
▪ Idea: Do a depth-limited

computation, but with
increasing depths until
change is small

▪ Note: deep parts of the tree
eventually don’t matter if γ <
1

Time-Limited Values
o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the
game ends in k more time steps
▪ Equivalently, it’s what a depth-k expectimax would give

from s

Reminders
o 21 days until the American election. I voted. Did you?
o Deadline to register to vote in PA is Monday, Oct 19.

o HW4 due tonight at 11:59pm Eastern.
o Quiz 5 on Adversarial Search is due tomorrow.
o HW5 has been released. It will be due on Tuesday Oct 20.
o No lecture on Thursday.

o Midterm details:
o * No HW from Oct 20-27.

* Tues Oct 20: Practice midterm released (for credit)
* Saturday Oct 24: Practice midterm is due.
* Midterm available Monday Oct 26 and Tuesday Oct 27.
* 3 hour block. Open book, open notes, no collaboration.

Computing Time-Limited Values

Value Iteration

Value Iteration
o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one ply of expectimax from each state:

o Repeat until convergence

o Complexity of each iteration: O(S2A)

o Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Example: Value Iteration

Assume no discount!

Example: Value Iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Convergence*
o How do we know the Vk vectors are going to converge?

o Case 1: If the tree has maximum depth M, then VM
holds the actual untruncated values

o Case 2: If the discount is less than 1
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
▪ The difference is that on the bottom layer, Vk+1 has

actual rewards while Vk has zeros
▪ That last layer is at best all RMAX
▪ It is at worst RMIN
▪ But everything is discounted by γk that far out
▪ So Vk and Vk+1 are at most γk max|R| different
▪ So as k increases, the values converge

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations
o Definition of “optimal utility” via expectimax recurrence gives a simple one-step

lookahead relationship amongst optimal utility values

o These are the Bellman equations, and they characterize optimal values in a way we’ll
use over and over

a

s

s, a

s,a,s’
s’

Policy Methods

Policy Evaluation

Fixed Policies

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy π(s), then the tree would be simpler – only one action per state
▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

π(s)

s

s, π(s)

s, π(s),s’
s’

Do the optimal action Do what π says to do

Utilities for a Fixed Policy
o Another basic operation: compute the utility of a state s

under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy π:
Vπ(s) = expected total discounted rewards starting in s and following π

o Recursive relation (one-step look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’
s’

Example: Policy Evaluation
Always Go Right Always Go Forward

Example: Policy Evaluation
Always Go Right Always Go Forward

Policy Evaluation

o How do we calculate the V’s for a fixed policy π?

o Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

o Efficiency: O(S2) per iteration

o Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)

s, π(s),s’
s’

Policy Extraction

Computing Actions from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?
▪ It’s not obvious!

o We need to do a mini-expectimax (one step)

o This is called policy extraction, since it gets the policy implied by
the values

Computing Actions from Q-Values

o Let’s imagine we have the optimal q-values:

o How should we act?
▪ Completely trivial to decide!

o Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

o Value iteration repeats the Bellman updates:

o Problem 1: It’s slow – O(S2A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Problems with Value Iteration

o Value iteration repeats the Bellman updates:

o Problem 1: It’s slow – O(S2A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

Policy Iteration

o Alternative approach for optimal values:
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy

(not optimal utilities!) until convergence
▪ Step 2: Policy improvement: update policy using one-step look-

ahead with resulting converged (but not optimal!) utilities as
future values

▪ Repeat steps until policy converges

o This is policy iteration
▪ It’s still optimal!
▪ Can converge (much) faster under some conditions

Policy Iteration

o Evaluation: For fixed current policy π, find values with policy
evaluation:
▪ Iterate until values converge:

o Improvement: For fixed values, get a better policy using policy
extraction
▪ One-step look-ahead:

Comparison
o Both value iteration and policy iteration compute the same thing (all optimal values)

o In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy
▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

o In policy iteration:
▪ We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
▪ The new policy will be better (or we’re done)

o Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

o So you want to….
▪ Compute optimal values: use value iteration or policy iteration
▪ Compute values for a particular policy: use policy evaluation
▪ Turn your values into a policy: use policy extraction (one-step

lookahead)

o These all look the same!
▪ They basically are – they are all variations of Bellman updates
▪ They all use one-step lookahead expectimax fragments
▪ They differ only in whether we plug in a fixed policy or max over

actions

Maximum Expected Utility
o Why should we average utilities? Why not minimax?

o Principle of maximum expected utility:
▪ A rational agent should choose the action that maximizes its expected utility,

given its knowledge
o Questions:

▪ Where do utilities come from?
▪ How do we know such utilities even exist?
▪ How do we know that averaging even makes sense?
▪ What if our behavior (preferences) can’t be described by utilities?

What Utilities to Use?

o For worst-case minimax reasoning, terminal function scale doesn’t matter
▪ We just want better states to have higher evaluations (get the ordering

right)
▪ We call this insensitivity to monotonic transformations

o For average-case expectimax reasoning, we need magnitudes to be
meaningful

0 40 20 30 x2 0 1600 400 900

Utilities

o Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

o Where do utilities come from?
▪ In a game, may be simple (+1/-1)
▪ Utilities summarize the agent’s goals
▪ Theorem: any “rational” preferences can

be summarized as a utility function

o We hard-wire utilities and let
behaviors emerge
▪ Why don’t we let agents pick utilities?
▪ Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes

Getting ice cream

Get Single Get Double

Oops Whew!

Preferences

o An agent must have preferences
among:
▪ Prizes: A, B, etc.
▪ Lotteries: situations with uncertain

prizes

o Notation:
▪ Preference:
▪ Indifference:

A B

p 1-p

A LotteryA Prize

A

Rationality

o We want some constraints on preferences before we call them rational,
such as:

o For example: an agent with intransitive preferences can
be induced to give away all of its money
▪ If B > C, then an agent with C would pay (say) 1 cent to get B
▪ If A > B, then an agent with B would pay (say) 1 cent to get A
▪ If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

)()()(CACBBA ⇒∧Axiom of Transitivity:

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

o Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
▪ Given any preferences satisfying these constraints, there exists a real-

valued function U such that:

▪ I.e. values assigned by U preserve preferences of both prizes and
lotteries!

o Maximum expected utility (MEU) principle:
▪ Choose the action that maximizes expected utility
▪ Note: an agent can be entirely rational (consistent with MEU) without ever

representing or manipulating utilities and probabilities
▪ E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle

Human Utilities

Utility Scales

o Normalized utilities: u+ = 1.0, u- = 0.0

o Micromorts: one-millionth chance of death, useful for
paying to reduce product risks, etc.

o QALYs: quality-adjusted life years, useful for medical
decisions involving substantial risk

o Note: behavior is invariant under positive linear
transformation

o With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes

Micromort examples
Death from Micromorts per exposure

Scuba diving 5 per dive

Skydiving 7 per jump

Base-jumping 430 per jump

Climbing Mt. Everest 38,000 per ascent

1 Micromort

Train travel 6000 miles

Jet 1000 miles

Car 230 miles

Walking 17 miles

Bicycle 10 miles

Motorbike 6 miles

o Utilities map states to real numbers. Which numbers?
o Standard approach to assessment (elicitation) of human utilities:

▪ Compare a prize A to a standard lottery Lp between
• “best possible prize” u+ with probability p
• “worst possible catastrophe” u- with probability 1-p

▪ Adjust lottery probability p until indifference: A ~ Lp

▪ Resulting p is a utility in [0,1]

Human Utilities

0.999999 0.000001

No change

Pay $30

Instant death

Money

o Money does not behave as a utility function, but we can talk
about the utility of having money (or being in debt)

o Given a lottery L = [p, $X; (1-p), $Y]
▪ The expected monetary value EMV(L) is p*X + (1-p)*Y
▪ U(L) = p*U($X) + (1-p)*U($Y)
▪ Typically, U(L) < U(EMV(L))
▪ In this sense, people are risk-averse
▪ When deep in debt, people are risk-prone

Example: Insurance

o Consider the lottery [0.5, $1000; 0.5,
$0]
▪ What is its expected monetary value?

($500)
▪ What is its certainty equivalent?

• Monetary value acceptable in lieu of
lottery

• $400 for most people
▪ Difference of $100 is the insurance

premium
• There’s an insurance industry because

people will pay to reduce their risk
• If everyone were risk-neutral, no

insurance needed!
▪ It’s win-win: you’d rather have the $400

and the insurance company would
rather have the lottery (their utility
curve is linear and they have many
lotteries)

Example: Human Rationality?

o Famous example of Allais (1953)

▪ A: [0.8, $4k; 0.2, $0]
▪ B: [1.0, $3k; 0.0, $0]

▪ C: [0.2, $4k; 0.8, $0]
▪ D: [0.25, $3k; 0.75, $0]

o Most people prefer B > A, C > D

o But if U($0) = 0, then
▪ B > A ⇒ U($3k) > 0.8 U($4k)
▪ C > D ⇒ 0.8 U($4k) > U($3k)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Markov Decision Processes
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Navigating an Asteroid Field
	Stochastic Transition Model
	Stochastic Transition Model
	Reward function
	Markov Decision Process
	Markov Decision Process
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Solution == Policy
	Policies and Rewards
	Sequences of Rewards
	Utilities of Sequences
	Utilities of Sequences
	Discounting
	Discounting
	Stationary Preferences
	Infinite Utilities?!
	Recap: Defining MDPs
	Example Hyperdrive MDP
	MDP Search Trees
	Hyperdrive Search Tree
	Optimal Quantities
	Values of States
	Racing Search Tree
	Racing Search Tree
	Racing Search Tree
	Time-Limited Values
	Reminders
	Computing Time-Limited Values
	Value Iteration
	Value Iteration
	Example: Value Iteration
	Example: Value Iteration
	Convergence*
	The Bellman Equations
	The Bellman Equations
	Policy Methods
	Policy Evaluation
	Fixed Policies
	Utilities for a Fixed Policy
	Example: Policy Evaluation
	Example: Policy Evaluation
	Policy Evaluation
	Policy Extraction
	Computing Actions from Values
	Computing Actions from Q-Values
	Policy Iteration
	Problems with Value Iteration
	k=0
	k=1
	k=2
	k=3
	k=4
	k=5
	k=6
	k=7
	k=8
	k=9
	k=10
	k=11
	k=12
	k=100
	Problems with Value Iteration
	Policy Iteration
	Policy Iteration
	Comparison
	Summary: MDP Algorithms
	Maximum Expected Utility
	What Utilities to Use?
	Utilities
	Utilities: Uncertain Outcomes
	Preferences
	Rationality
	Rational Preferences
	Rational Preferences
	MEU Principle
	Human Utilities
	Utility Scales
	Micromort examples
	Human Utilities
	Money
	Example: Insurance
	Example: Human Rationality?

