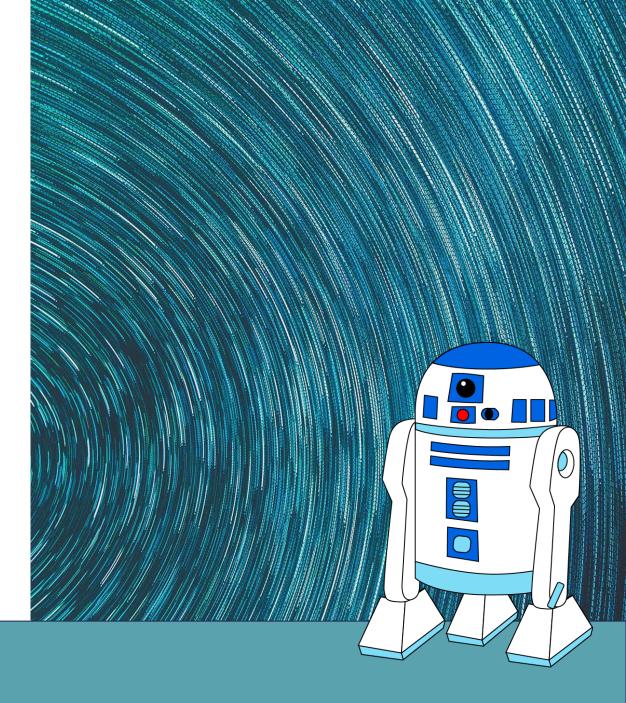
CIS 521: ARTIFICIAL INTELLIGENCE

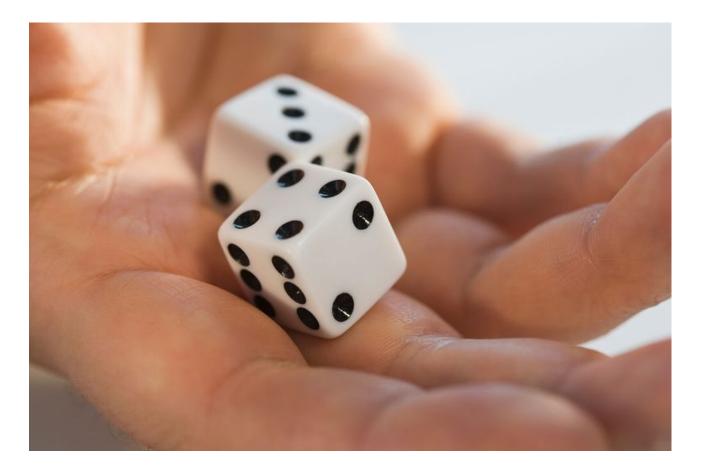
Expectimax and Utilities

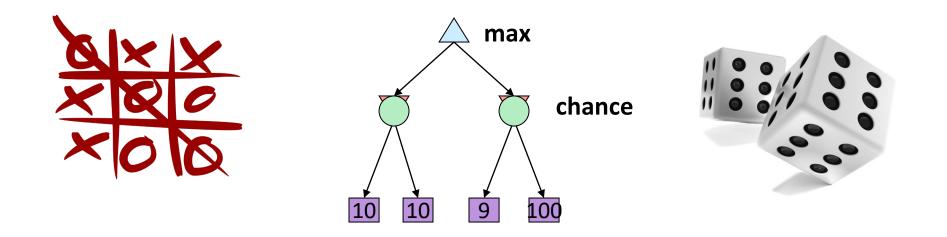
Harry Smith

Many of today's slides are courtesy of Dan Klein and Pieter Abbeel of University of California, Berkeley



Uncertain Outcomes

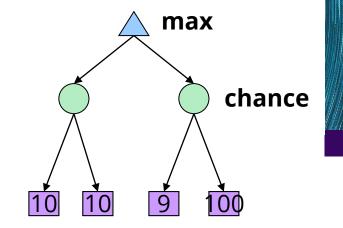




Idea: Uncertain outcomes controlled by chance, not an adversary!

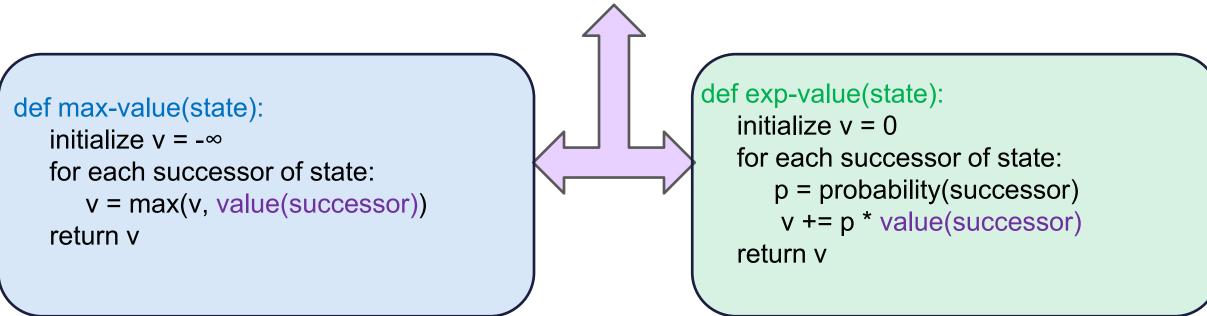
Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the opponent isn't optimal
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes



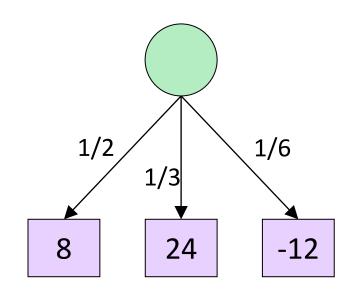
Expectimax Pseudocode

def value(state): if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

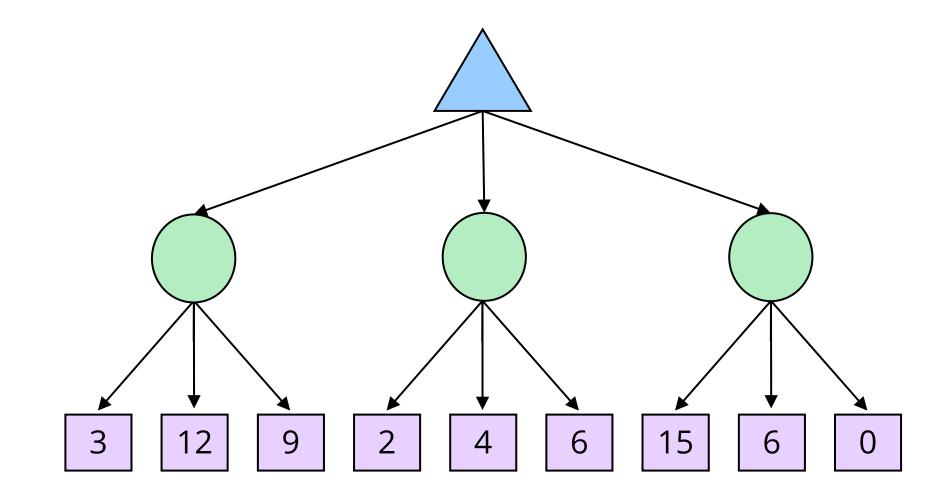


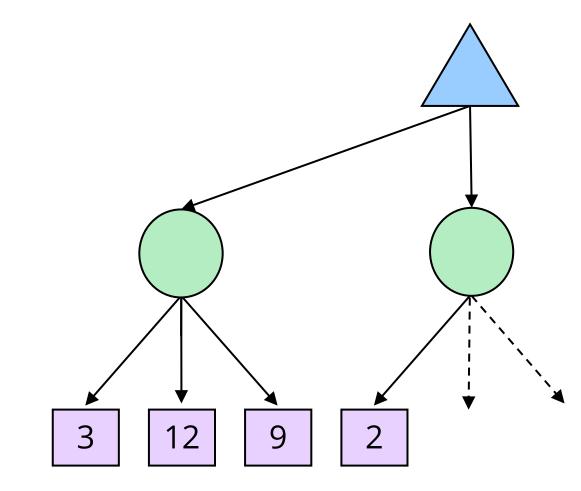
Expectimax Pseudocode

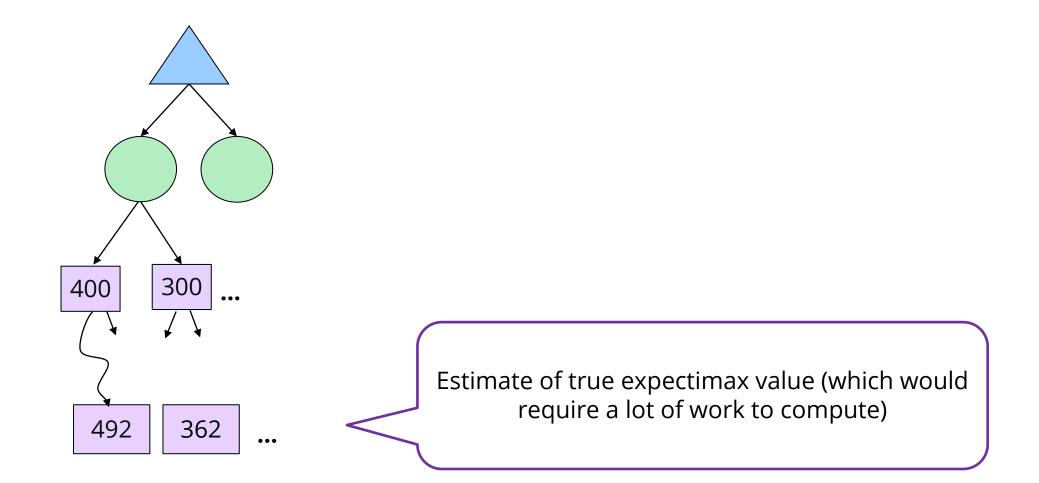
def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v



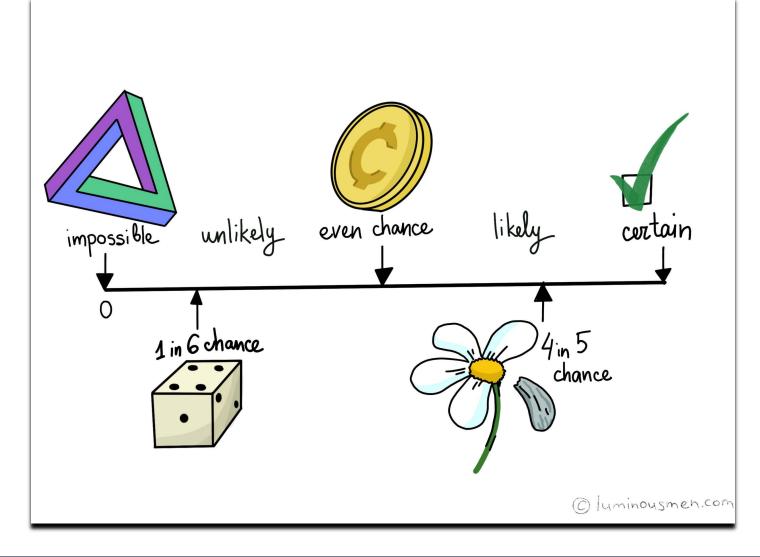
$$v = \frac{1}{2} \cdot (8) + \frac{1}{3} \cdot (24) + \frac{1}{6} \cdot (-12)$$







Probabilities

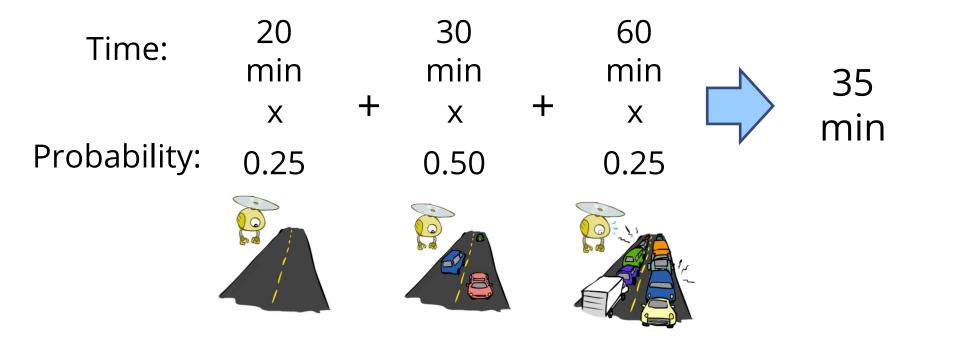


Probabilities

- o A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T = none) = 0.25, P(T = light) = 0.50, P(T = heavy) = 0.25
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- $\circ~$ As we get more evidence, probabilities may change:
 - P(T = heavy) = 0.25, P(T = heavy | Hour = 8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later

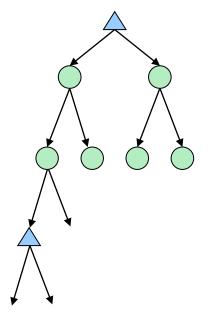
Probabilities

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?



What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes



Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

• **Objectivist / frequentist answer:**

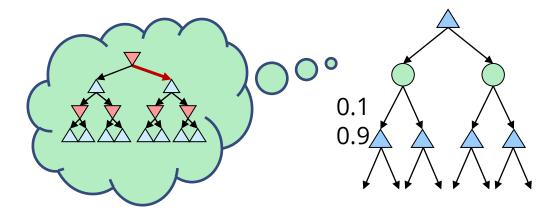
- Averages over repeated *experiments*
- E.g. empirically estimating P(rain) from historical observation
- Assertion about how future experiments will go (in the limit)
- New evidence changes the *reference class*
- Makes one think of *inherently random* events, like rolling dice

• Subjectivist / Bayesian answer:

- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
- E.g. agent's belief how an opponent will behave, given the state
- Often *learn* probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?



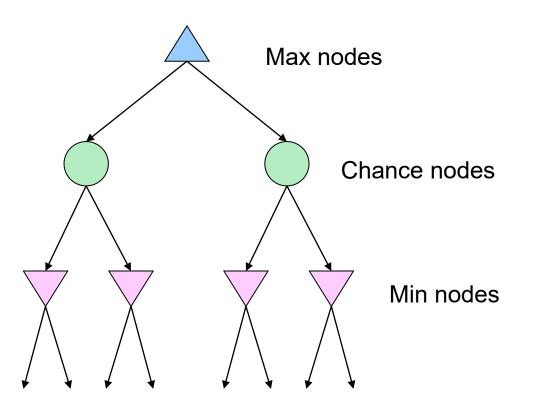
Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

• Dice rolls increase *b*: 21 possible rolls with 2 dice

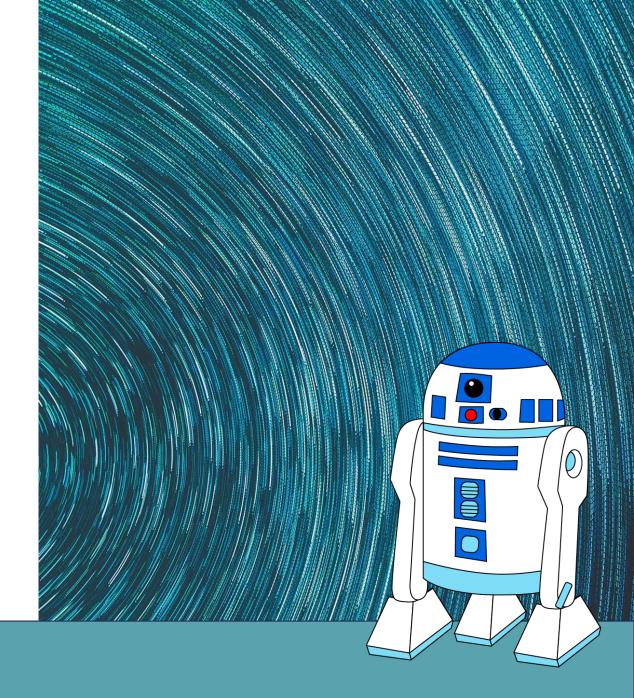
- Backgammon ≈ 20 legal moves
- Depth 2 \rightarrow 20 × (21 × 20)³ = 1.2 × 10⁹
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation fuanction + reinforcement learning → world-champion level play
- 1st AI world champion in any game!

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

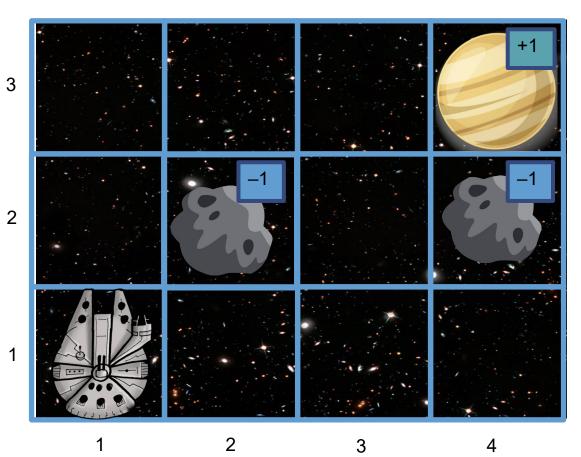


CIS 421/521: ARTIFICIAL INTELLIGENCE

Markov Decision Processes

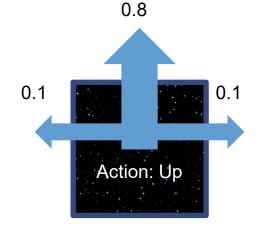


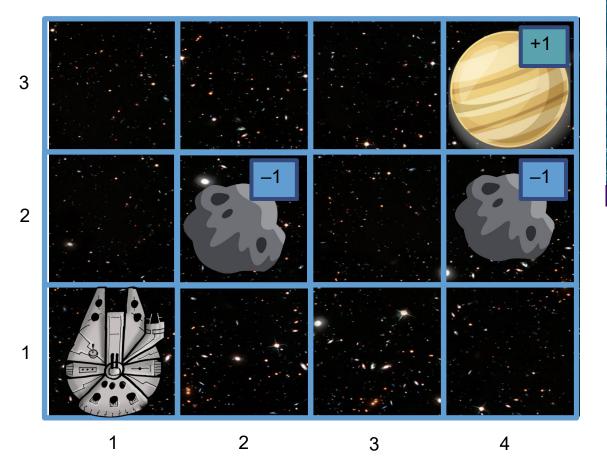
- Suppose we have a **fully-observable** 4x3 environment with goal states.
- The millennium falcon begins in the start state and picks an action at each time step.
- O Actions: *Up, Down, Left, Right*
- The game **terminates when it reaches a** 2 **goal state** (+1 or -1).
- If the environment were **deterministic**, the solution would be easy:
 - [Up, Up, Right, Right, Right]



- Instead of making the environment deterministic, we will make it **stochastic**.
- If the Falcon selects the action *Up* then it only moves up 80% of the time.
- 10% of the time the weird gravity fields cause it to veer off to the left or right.

Transition Model:



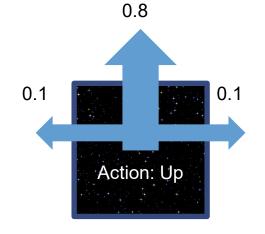


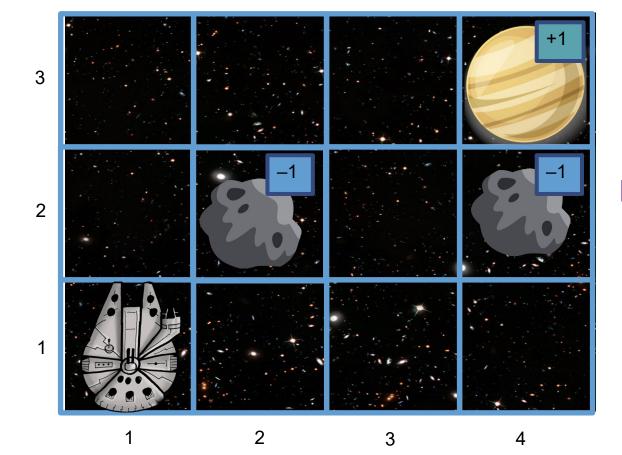
○ For action sequence

○ [Up, Up, Right, Right, Right],

 what's the probability that the millennium falcon reaches the intended goal?

Transition Model:



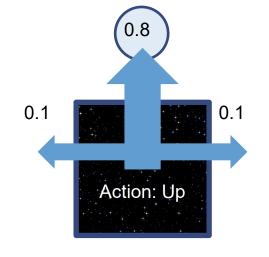


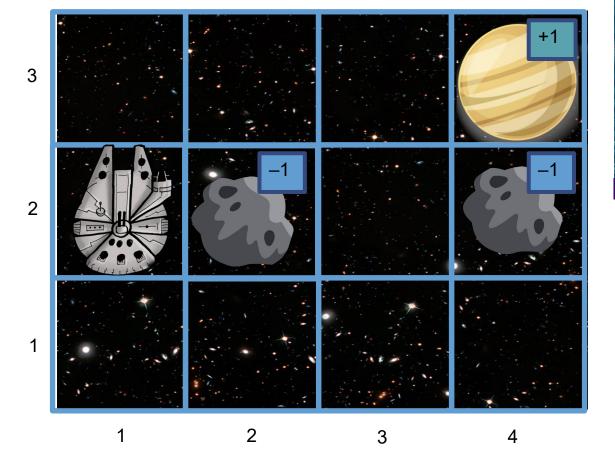
O For action sequence

0.8

- ([Up, Up, Right, Right, Right],
- what's the probability that the millennium falcon reaches the intended goal?

Transition Model:

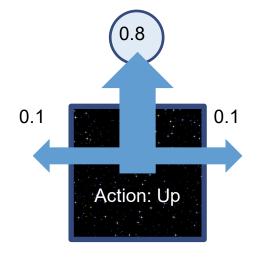


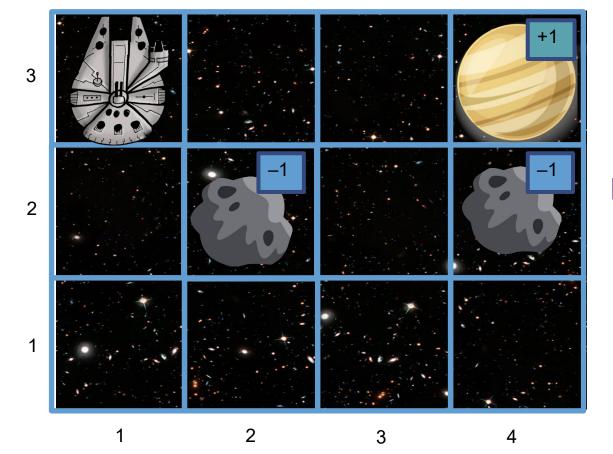


- O For action sequence
 - [Up, Up, Right, Right, Right],
- what's the probability that the millennium falcon reaches the intended goal?

0.8 * 0.8

Transition Model:

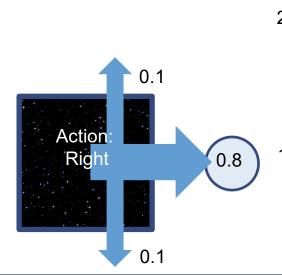


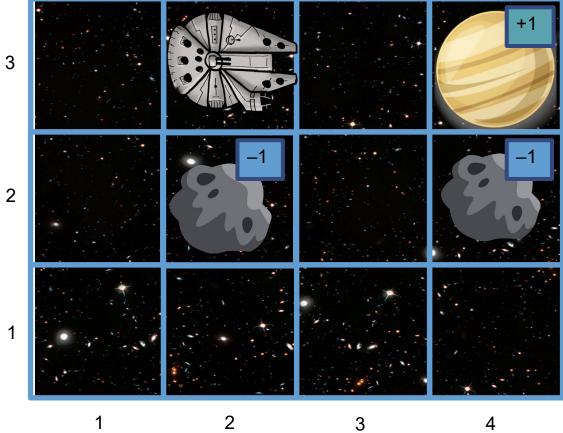


- O For action sequence
 - [Up, Up, Right, Right, Right],
- what's the probability that the millennium falcon reaches the intended goal?

0.8 * 0.8 * 0.8

Transition Model:





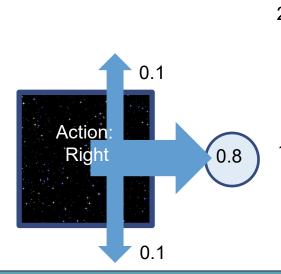
O For action sequence

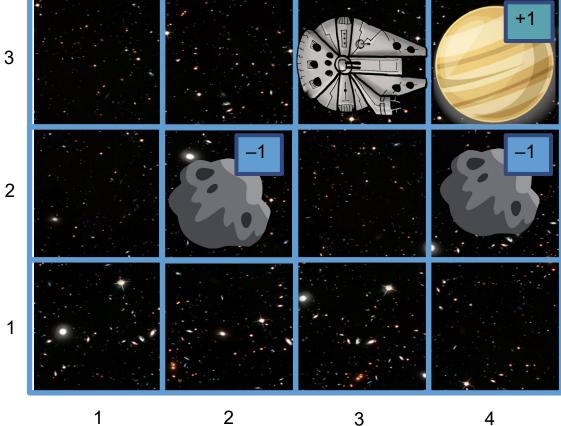
○ [Up, Up, Right, Right, Right],

 what's the probability that the millennium falcon reaches the intended goal?

0.8 * 0.8 * 0.8 * 0.8

Transition Model:



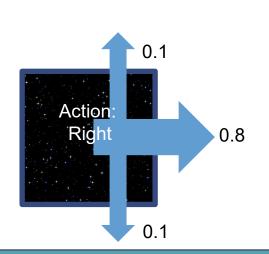


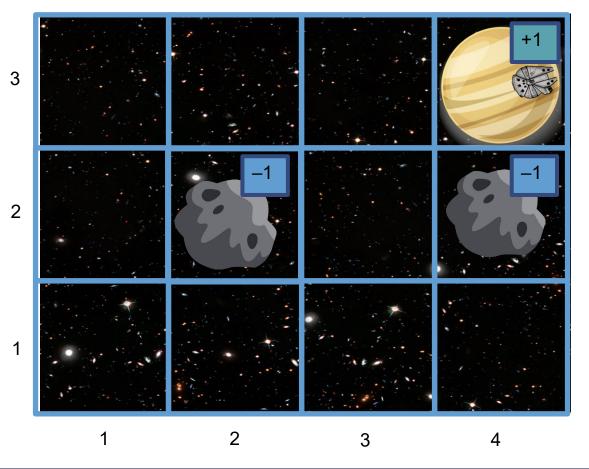
- O For action sequence
 - [Up, Up, Right, Right, Right]
- what's the probability that the millennium falcon reaches the intended goal?

0.8 * 0.8 * 0.8 * 0.8 * 0.8

= 0.32768

Transition Model:

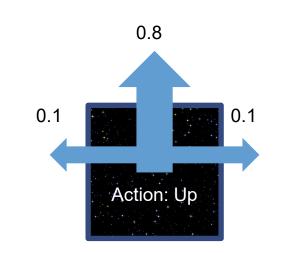


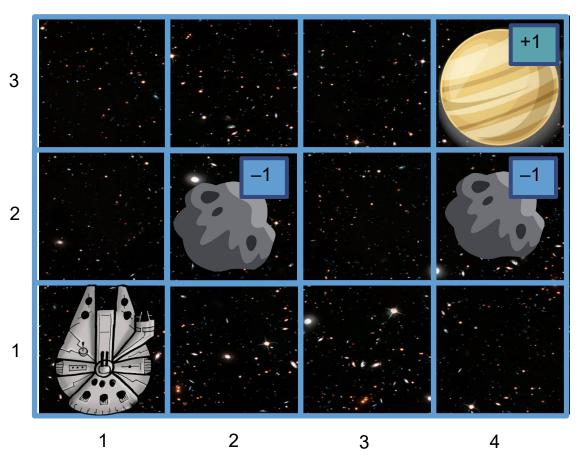


O For action sequence

○ [Up, Up, Right, Right, Right],

• what's the probability that the millennium falcon reaches the intended goal?



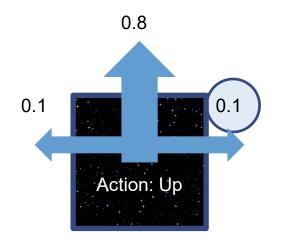


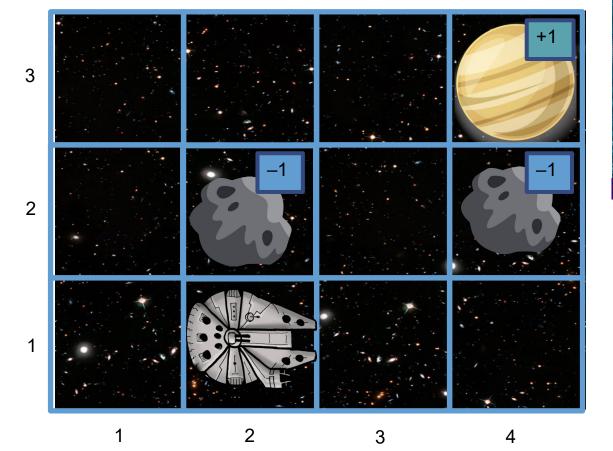
Transition Model:

- For action sequence
 - [Up, Up, Right, Right, Right],
- what's the probability that the millennium falcon reaches the intended goal?

0.1

Transition Model:

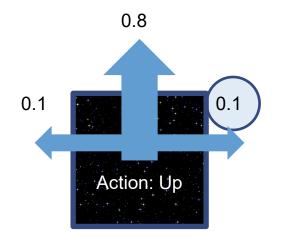


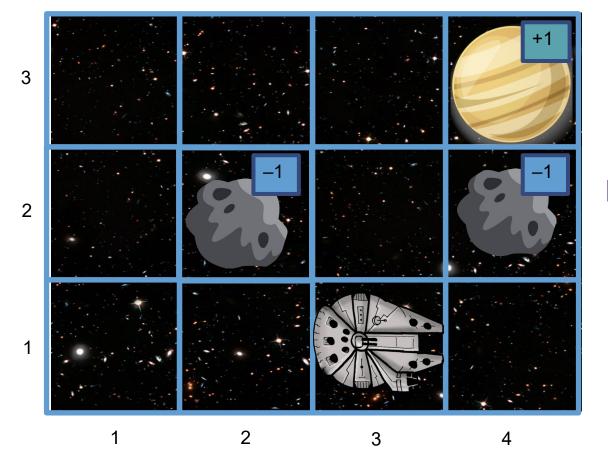


- For action sequence
 - [Up, Up, Right, Right, Right],
- what's the probability that the millennium falcon reaches the intended goal?

0.1 * 0.1

Transition Model:

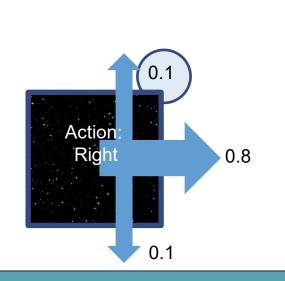


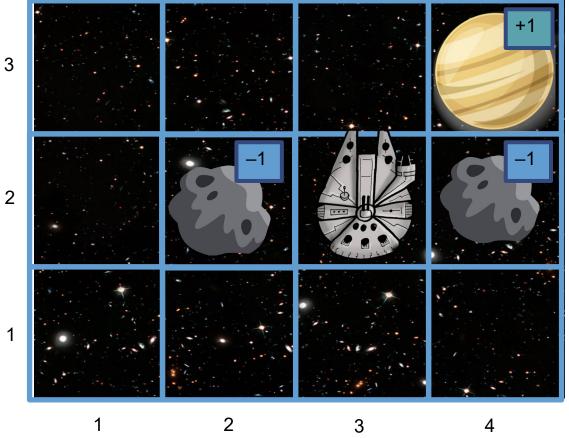


- O For action sequence
 - [Up, Up, Right, Right, Right],
- what's the probability that the millennium falcon reaches the intended goal?

0.1 * 0.1 * 0.1

Transition Model:





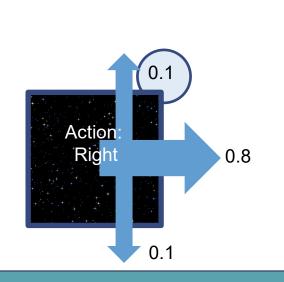
O For action sequence

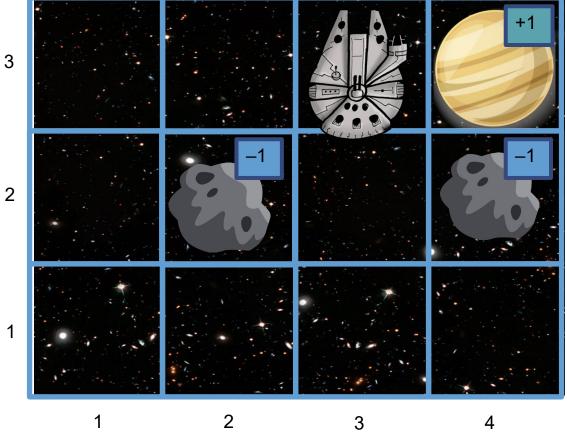
○ [Up, Up, Right, Right, Right],

• what's the probability that the millennium falcon reaches the intended goal?

0.1 * 0.1 * 0.1 * 0.1

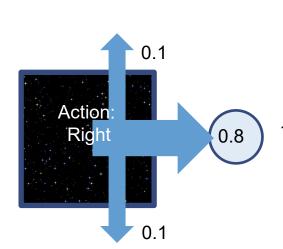
Transition Model:

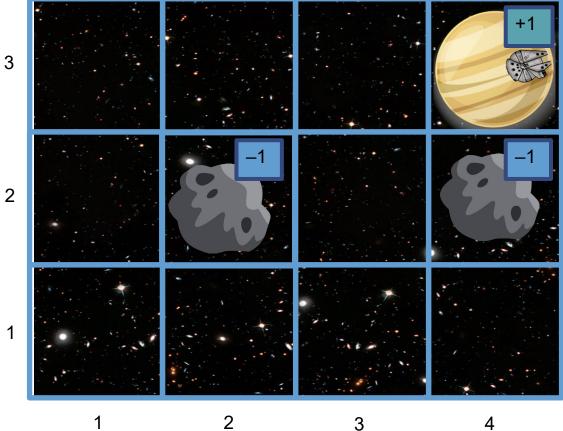


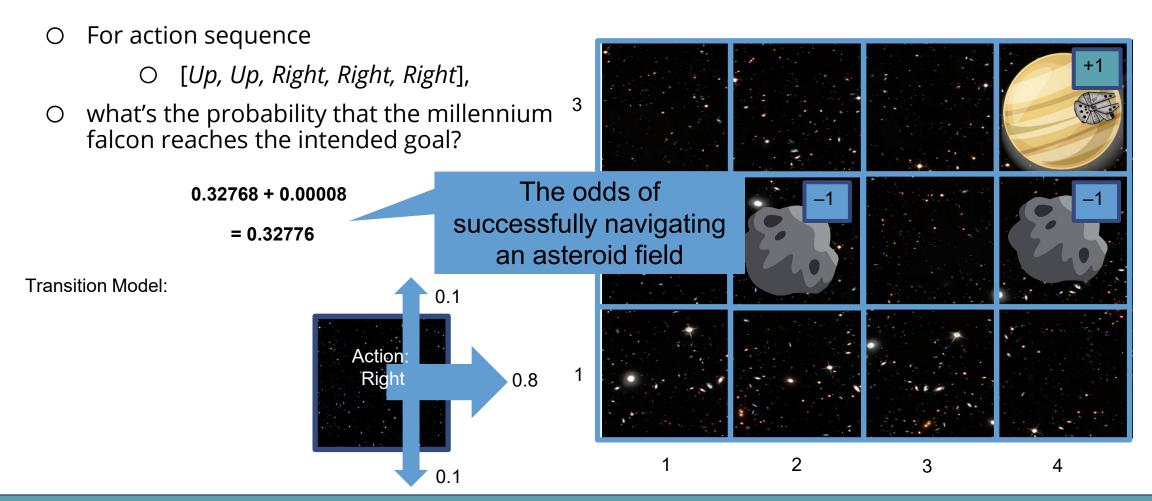


- O For action sequence
 - [Up, Up, Right, Right, Right],
- what's the probability that the millennium falcon reaches the intended goal?
 - 0.1 * 0.1 * 0.1 * 0.1 * 0.8
 - = 0.00008

Transition Model:

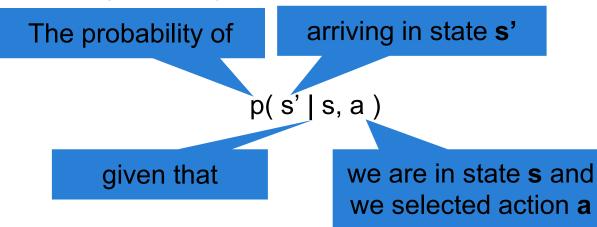


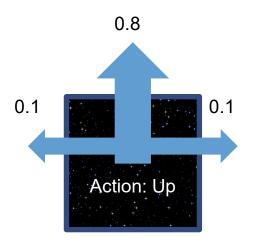




Stochastic Transition Model

- In our search algorithms so far, the transition model was deterministic and described the outcome of each action in each state.
- The transition function is sometimes written as T(s, a, s'), or explicitly as a probability:





Stochastic Transition Model

the history of earlier states.

- In our search algorithms so far, the transition model was deterministic and described the outcome of each action in each state.
- The transition function is sometimes written as T(s, a, s'), or explicitly as a probability:

0.8 Andrey Markov (1856) 1922) 0.1 0.1 Transitions are **Markovian**: Action: Up the probability of arriving in s' only depends on s and not

p(s' | s, a)

Reward function

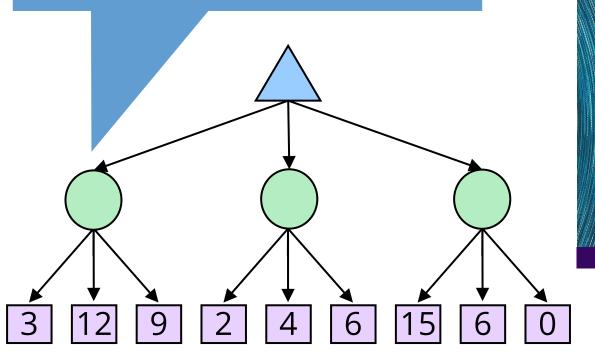
- We will specify a **utility or reward function** for the agent.
- The "rewards" can be **positive** or **negative** but are bounded by some maximum value.
- Because the decision process is **sequential**, we must specify the utility function on a sequence of states and actions.
- Instead of only giving a reward at the goal states, the agent can receive a reward at each time step, based on its transition from s to s' via action a.
- \circ $\,$ This is defined by a reward function $\,$
- R(s, a, s')
- For example, we could give the Millennium Falcon a small negative reward of -0.04 for every transition except for entering the terminal states (+1 for entering the planet's orbit or -1 for smashing into an asteroid).
- The **rewards are additive**, so if the Millennium Falcon takes 4 steps before entering the planet's orbit, it gets -0.04 + -0.04 + -0.04 + -0.04 + 1 = 0.84 for that solution.

Markov Decision Pr

O A Markov decision process or MDP is

- a **sequential** decision problem
- for a **fully observable** environment
- with a **stochastic** transition model
- that has **additive rewards**
- MDPs are non-deterministic search problems. One way of solving them is via expectimax search.

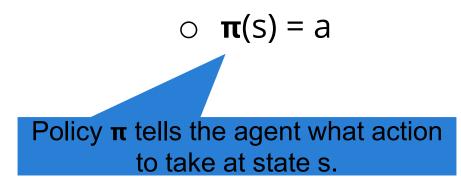
Expectimax node: outcome is uncertain. In expectimax search we calculate their expected utilities.



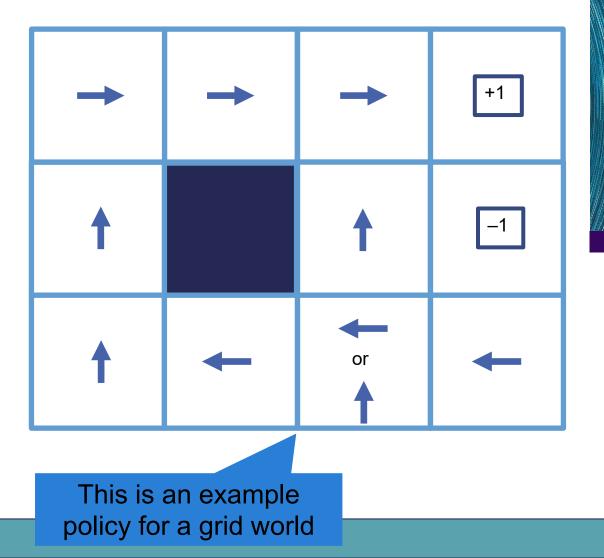
Markov Decision Process

- To find a solution to an MDP, you need to define the following things:
- **A set of states** s ∈ S
- A set of actions $a \in A$
- A transition function **T(s, a, s')**
 - Probability that executing action a in s will lead to s' P(s' | s, a)
 - The probability is called the model
- A reward function **R(s, a, s')**
 - Sometimes just R(s) or R(s')
- An **initial state** s₀
- Optionally, one or more **terminal states**

- In search problems a solution was a sequence of action that corresponded to the shortest path.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

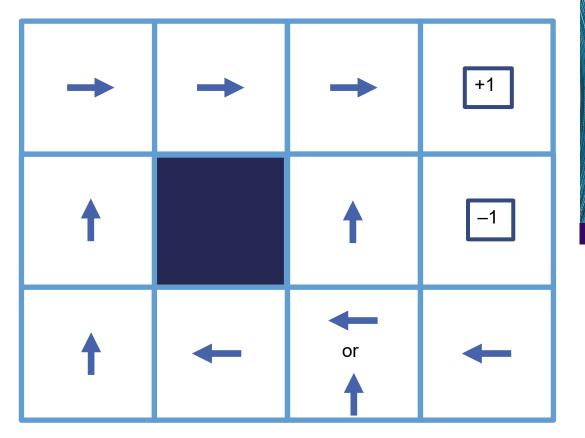


Renn Engineering



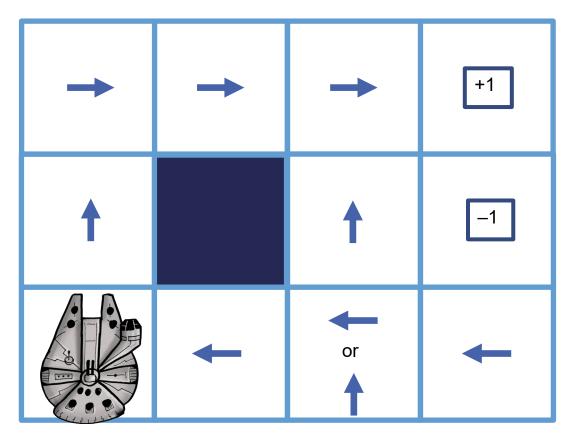
- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

$$\circ$$
 π (s) = a



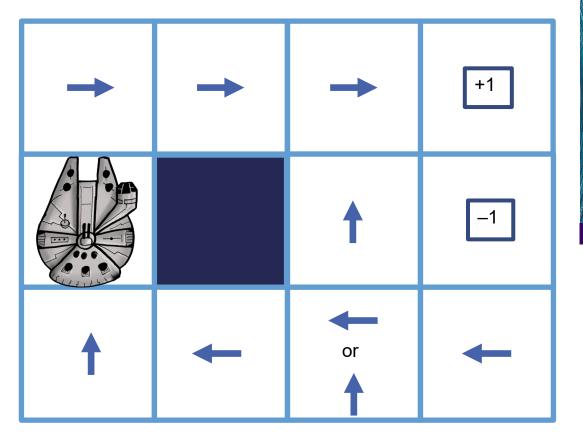
- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

$$\circ$$
 π (s) = a



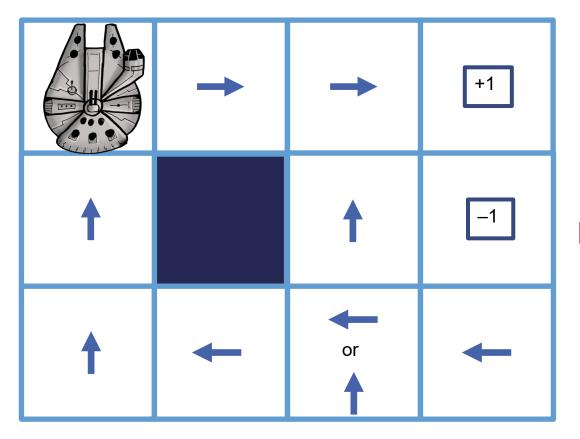
- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

$$\circ$$
 π (s) = a



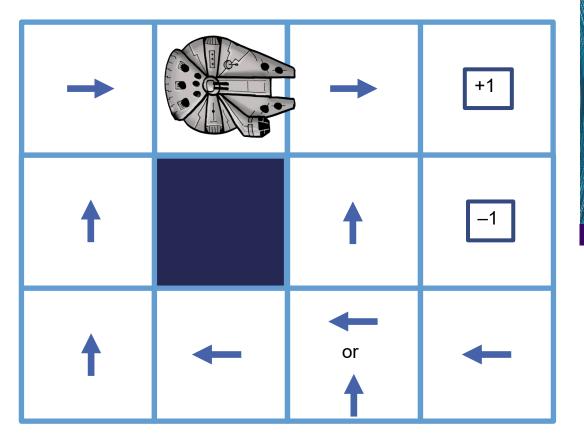
- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

$$\circ$$
 π (s) = a



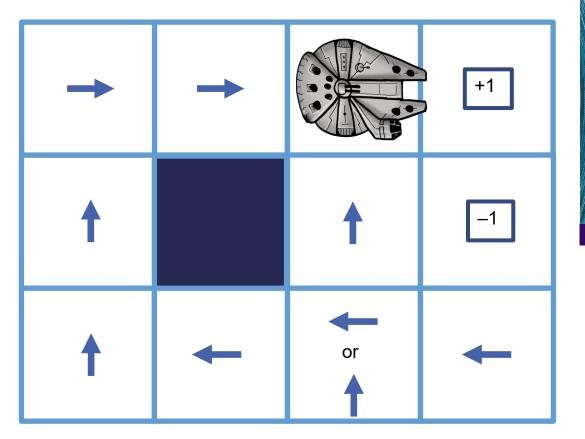
- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

$$\circ$$
 π (s) = a



- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

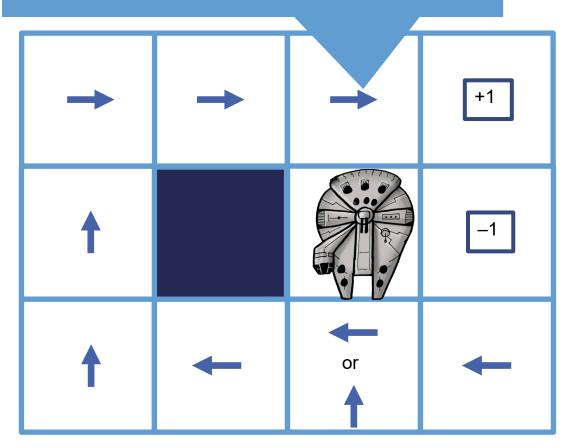
$$\circ$$
 π (s) = a



- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

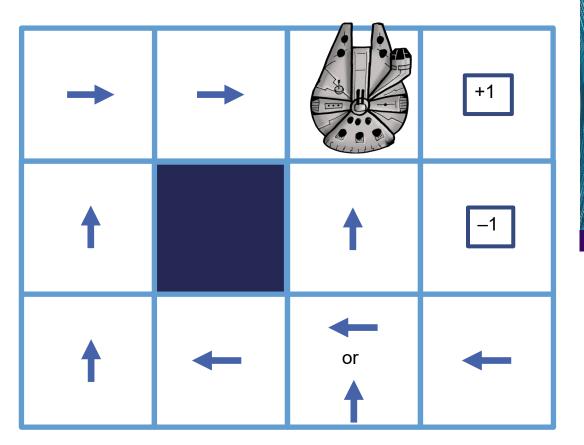
$$\circ$$
 π (s) = a

Even though the policy told me to go right here, there's no guarantee that me picking the action Right will result in me moving right. It's stochastic!

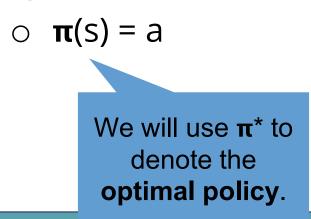


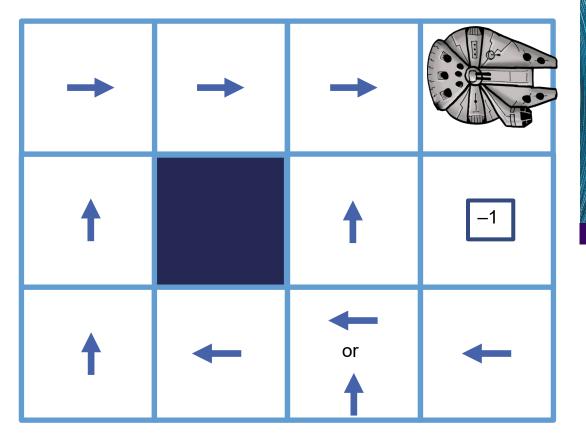
- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

$$\circ$$
 π (s) = a



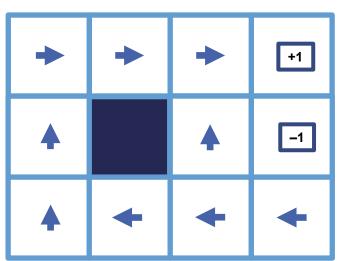
- In search problems a solution was a plan: a sequence of action that corresponded to the shortest path from the start to a goal.
- Because of the non-determinism in MDPs we cannot simply give a sequence of actions.
- Instead, the solution to an MDP is a **policy**.
 A policy maps from a state onto the action to take if the agent is in that state.

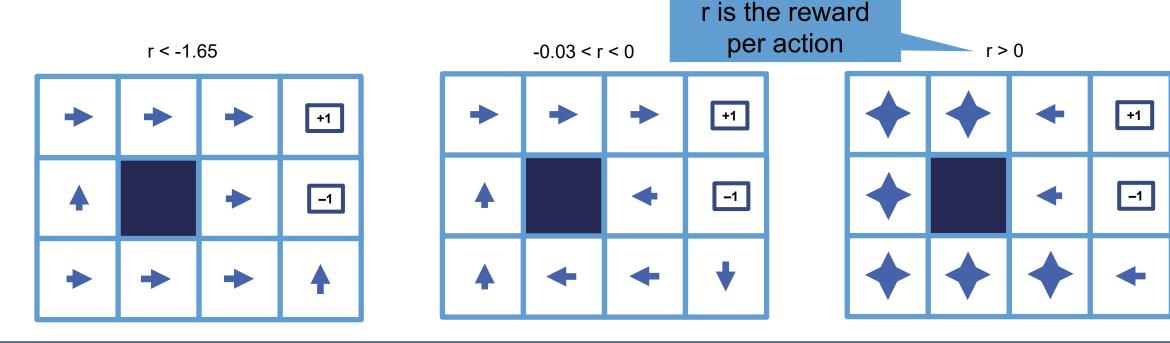




Policies and Rewards

- Even if the **same policy** is executed multiple times by the agent, this may lead to different sequence of states and actions (**environment history**), and thus a **different score** under the reward function.
- Therefore we need to compute the **expected utility** of all the possible paths generated by a policy.





😽 Penn Engineering

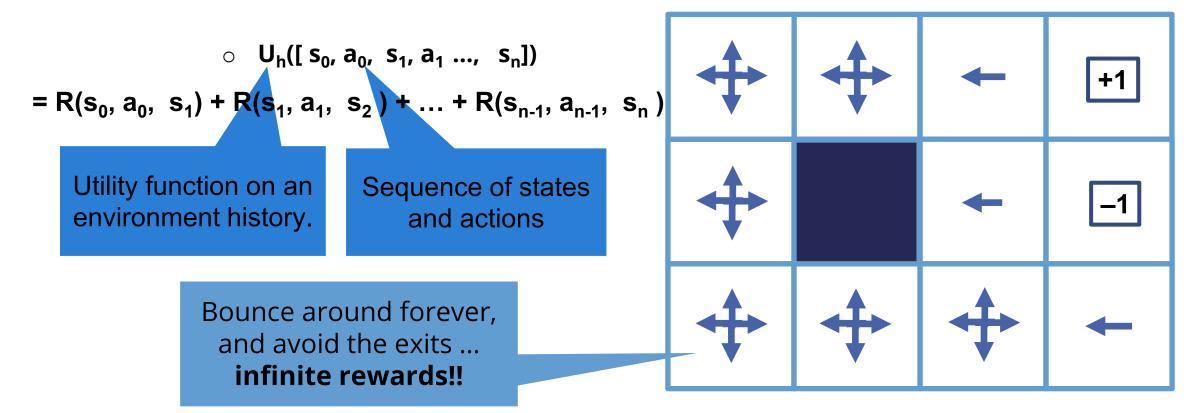
r = -0.04

Sequences of Rewards

• The performance of an agent in an MDP is the sum of the rewards for the transitions it takes.

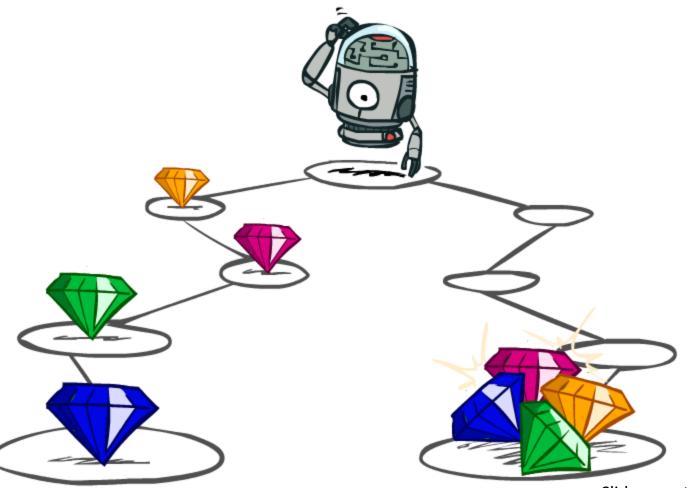
😽 Penn Engineering

r > 0



Utilities of Sequences

🐯 Penn Engineering



Slides courtesy of Dan Klein and Pieter Abbeel University of California, Berkeley

Utilities of Sequences

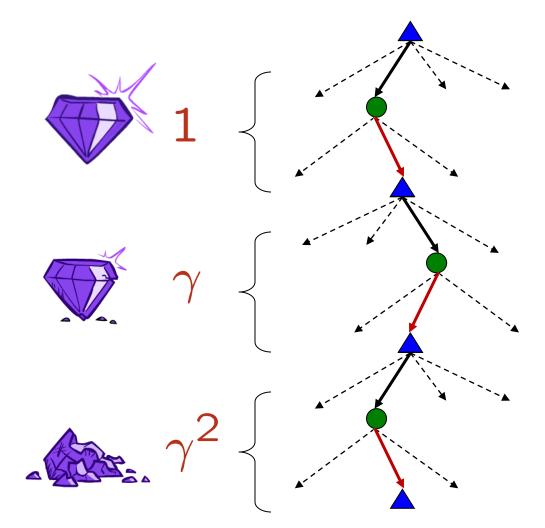
- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
 Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- $_{\circ}$ It's reasonable to maximize the sum of rewards
- o It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- $_{\circ}$ Example: discount of 0.5
 - $U([1,2,3]) = 0.5^{0}*1 + 0.5^{1}*2 + 0.5^{2}*3$ = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])



Stationary Preferences

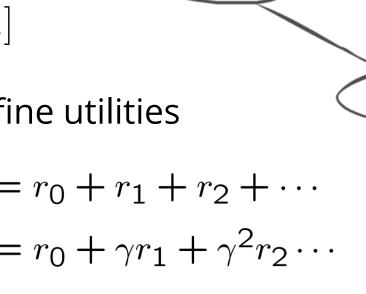
• Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility:
 - $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$ Discounted utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

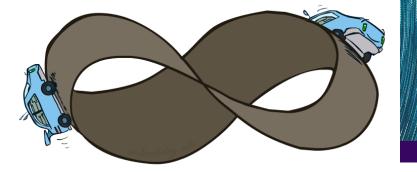


Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

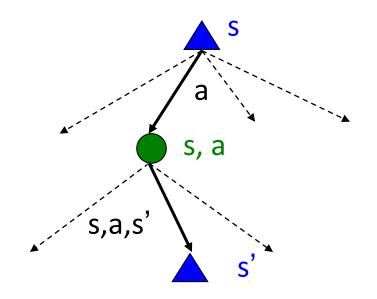
$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

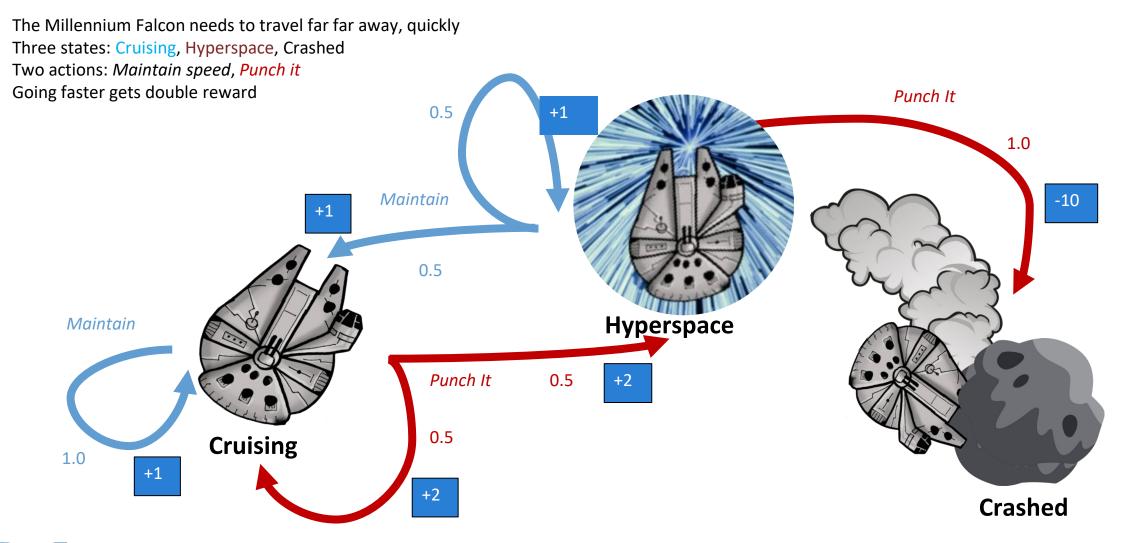


Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s' | s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards



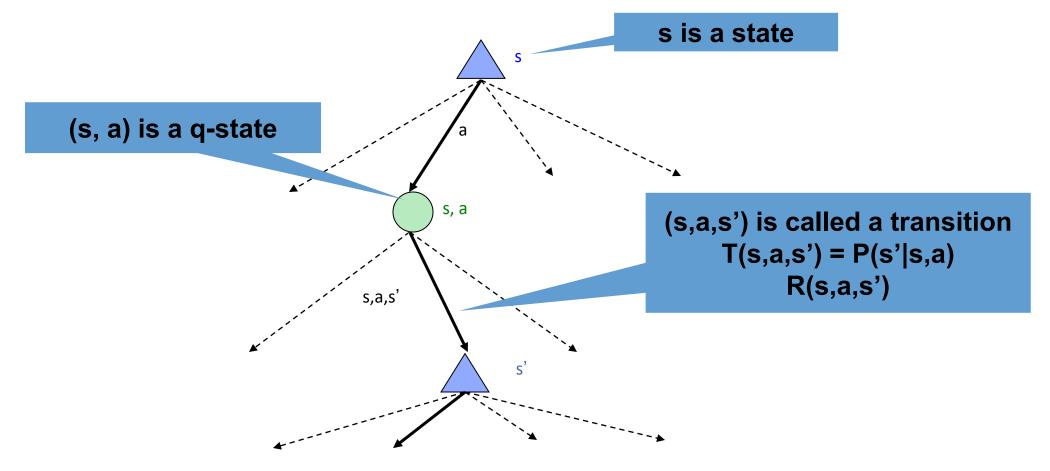
Example Hyperdrive MDP

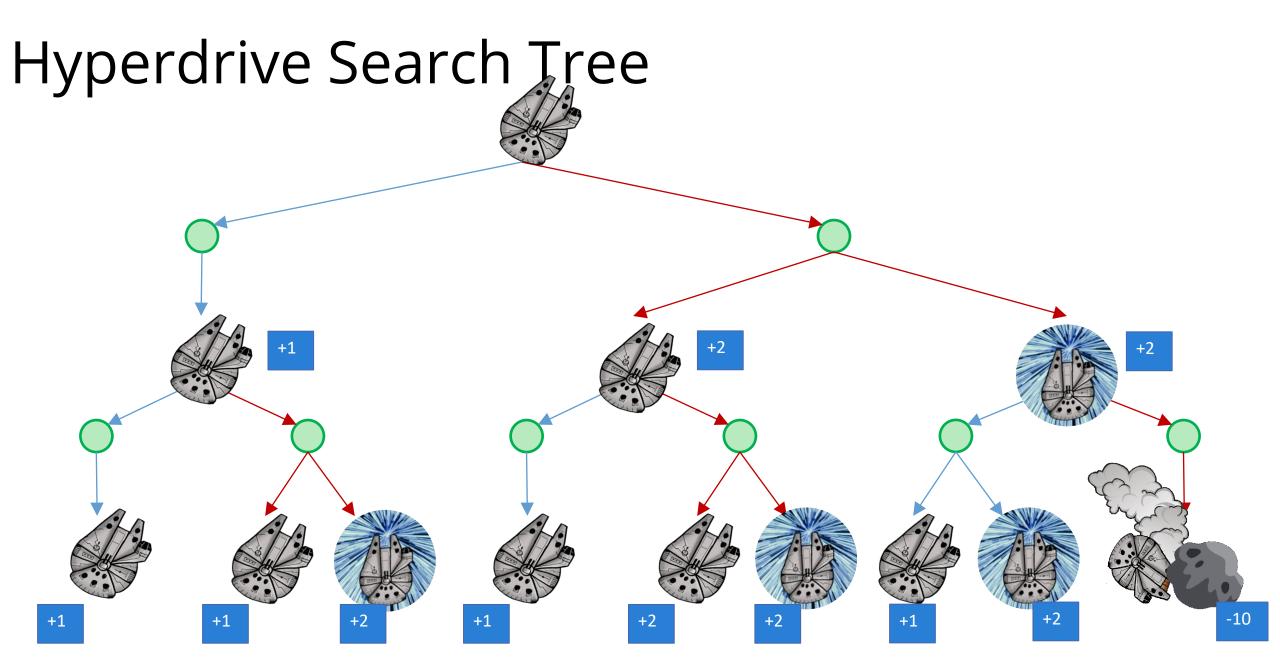


Penn Engineering

MDP Search Trees

• Each MDP state projects an expectimax-like search tree





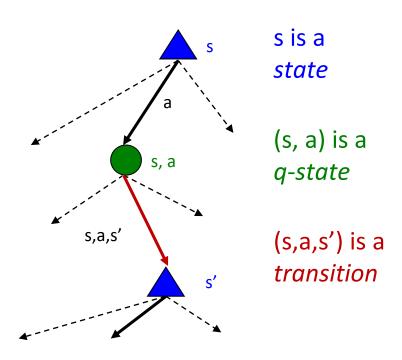
Penn Engineering

Optimal Quantities

- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):

Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:
 π^{*}(s) = optimal action from state s



Values of States

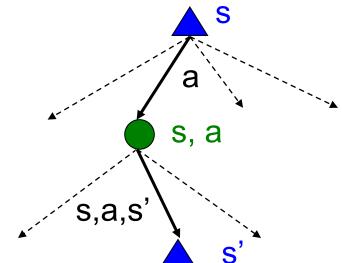
• Fundamental operation: compute the (expectimax) value of a state

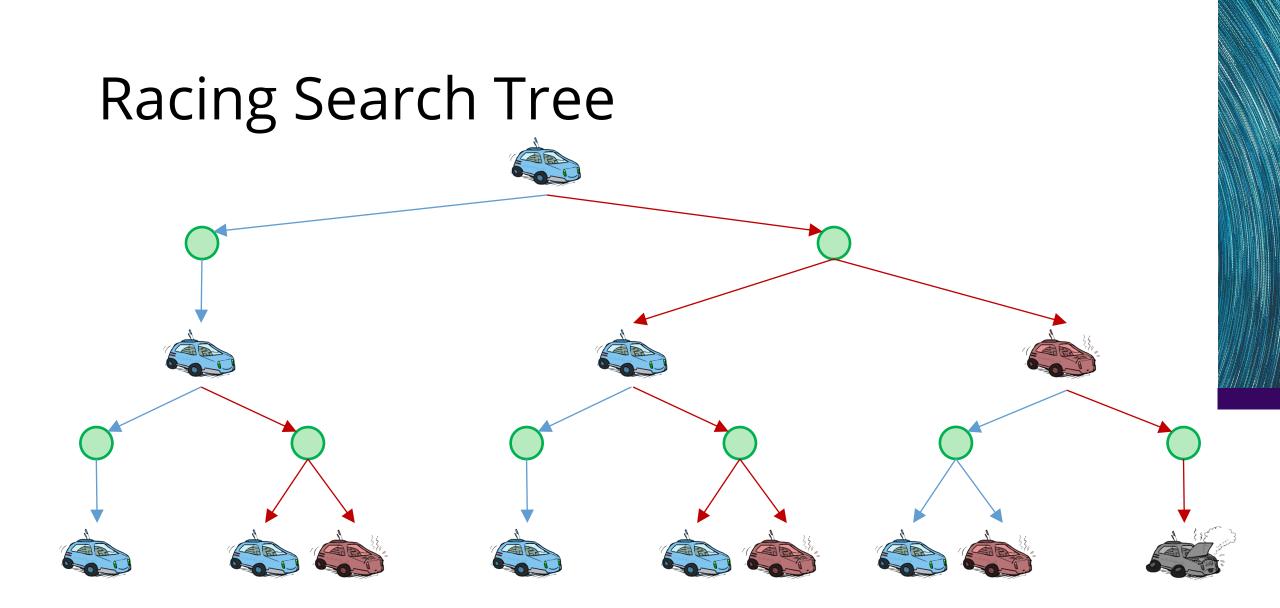
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

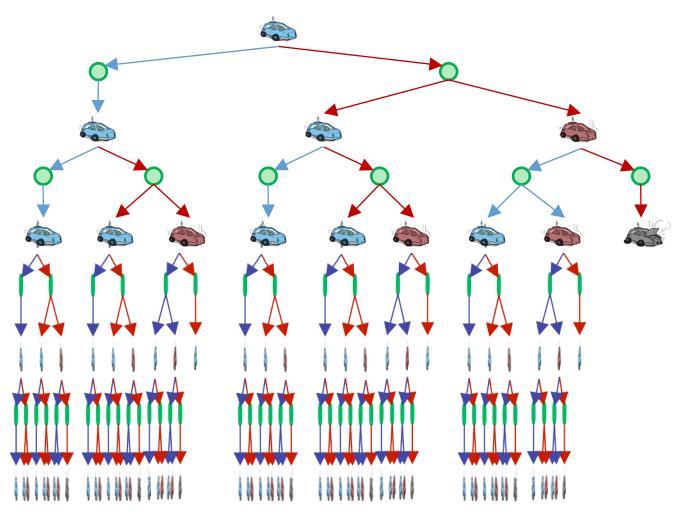
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$





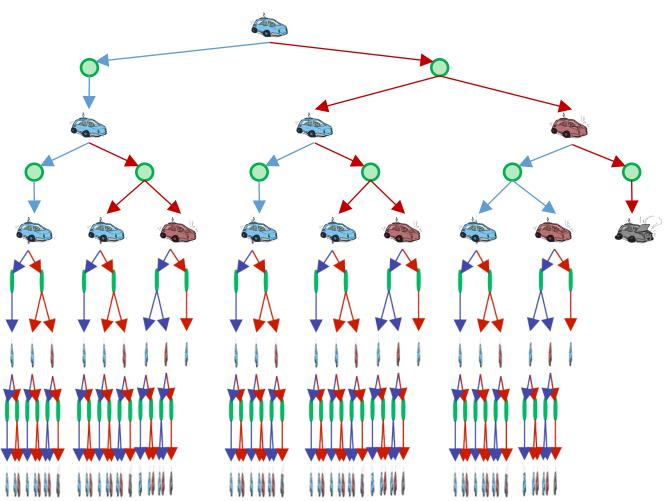
Racing Search Tree



🐯 Penn Engineering

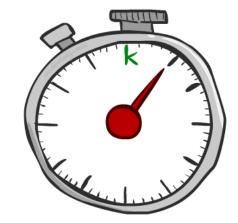
Racing Search Tree

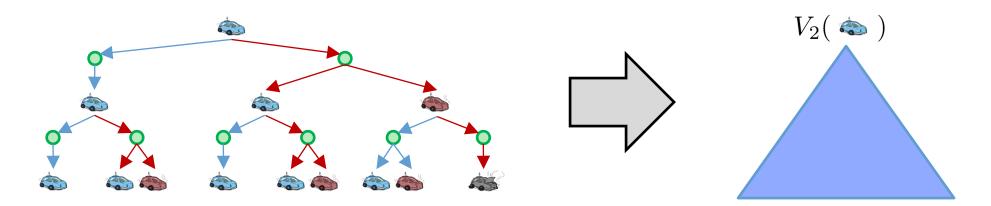
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1



Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

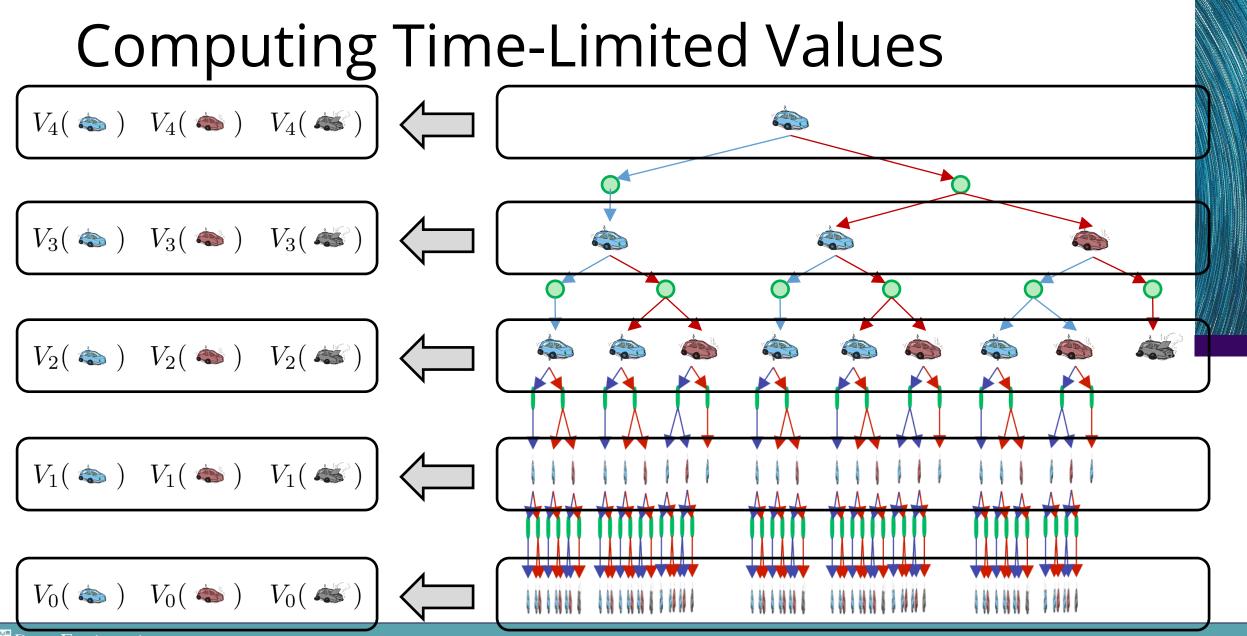




Reminders

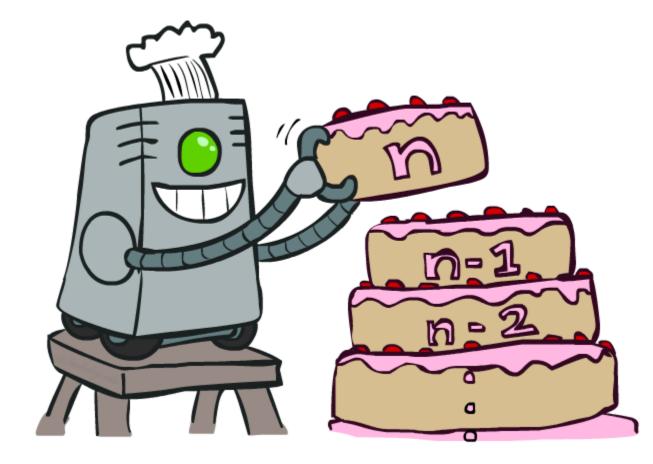
O 21 days until the American election. I voted. Did you?

- Deadline to register to vote in PA is **Monday, Oct 19.**
- O HW4 due tonight at 11:59pm Eastern.
- O Quiz 5 on Adversarial Search is due tomorrow.
- HW5 has been released. It will be due on Tuesday Oct 20.
- O No lecture on Thursday.
- O Midterm details:
- * No HW from Oct 20-27.
 - * Tues Oct 20: Practice midterm released (for credit)
 * Saturday Oct 24: Practice midterm is due.
 * Midterm available Monday Oct 26 and Tuesday Oct
 - * Midterm available Monday Oct 26 and Tuesday Oct 27.
 - * 3 hour block. Open book, open notes, no collaboration.



🐯 Penn Engineering

Value Iteration

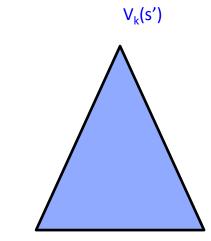


Value Iteration

- \circ Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- $_{\circ}$ Given vector of V_k(s) values, do one ply of expectimax from each state:

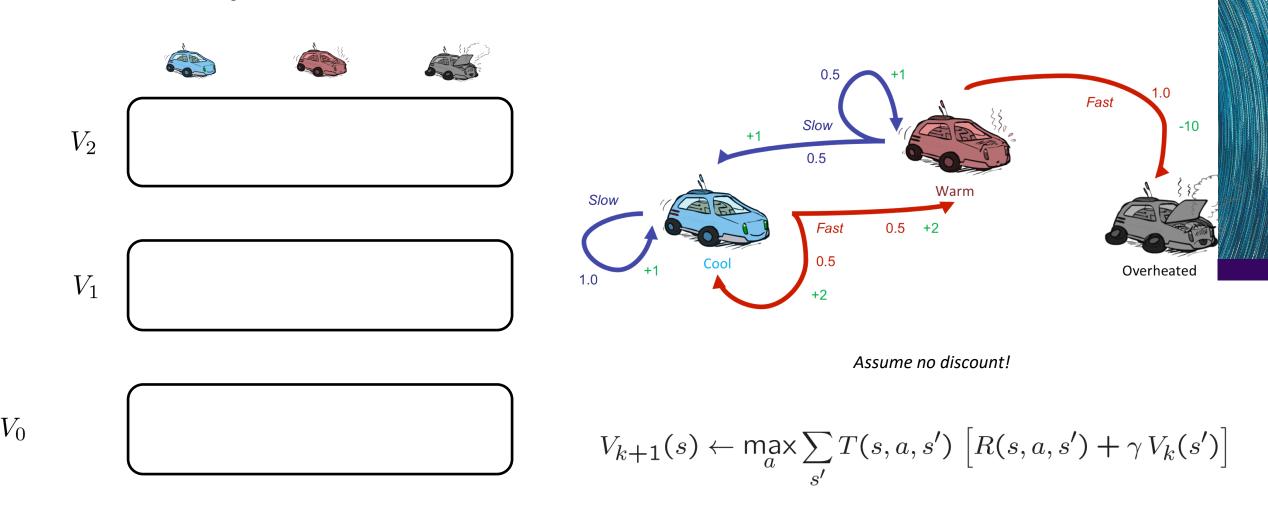
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do



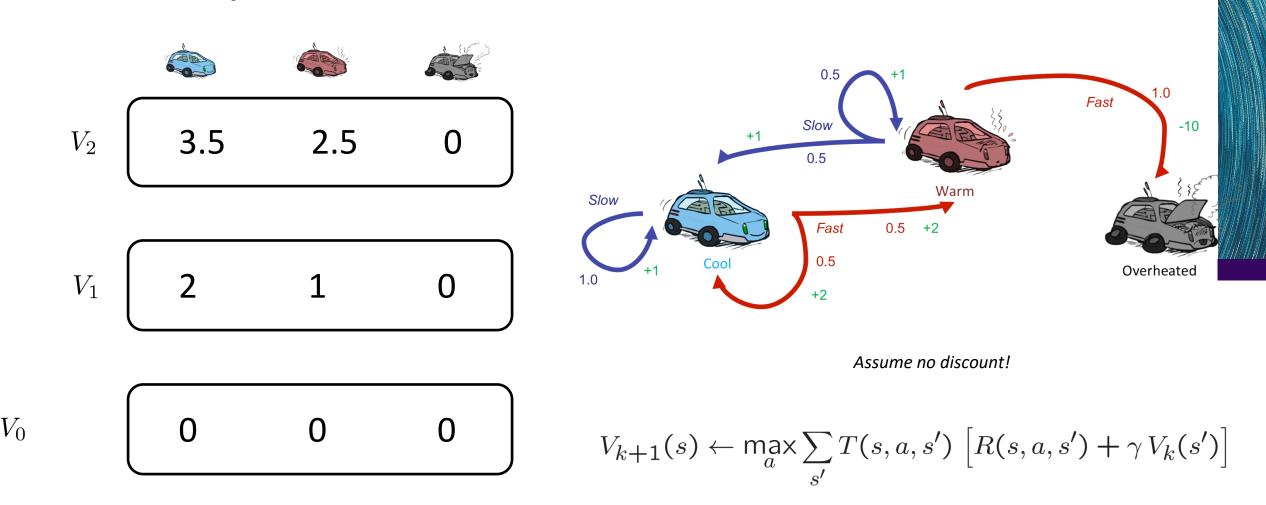
 $V_{k+1}(s)$

Example: Value Iteration



Renn Engineering

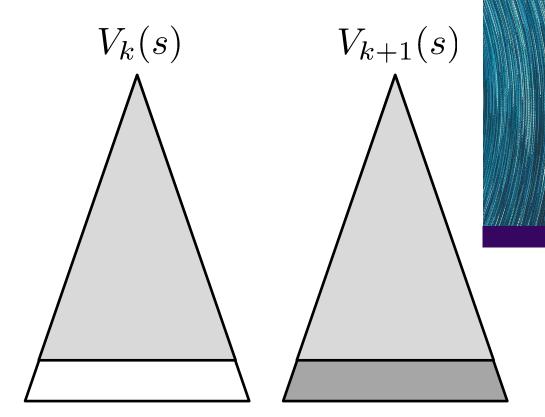
Example: Value Iteration



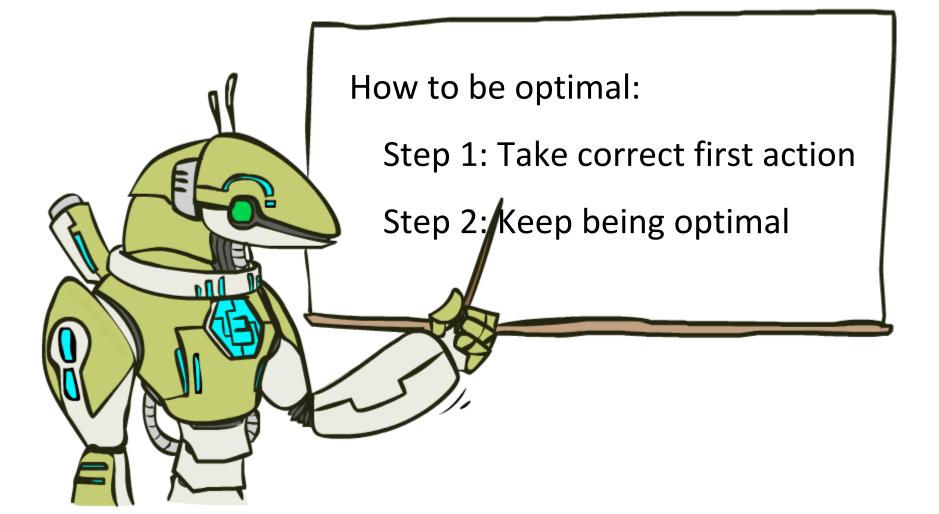
🐯 Penn Engineering

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge



The Bellman Equations



The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

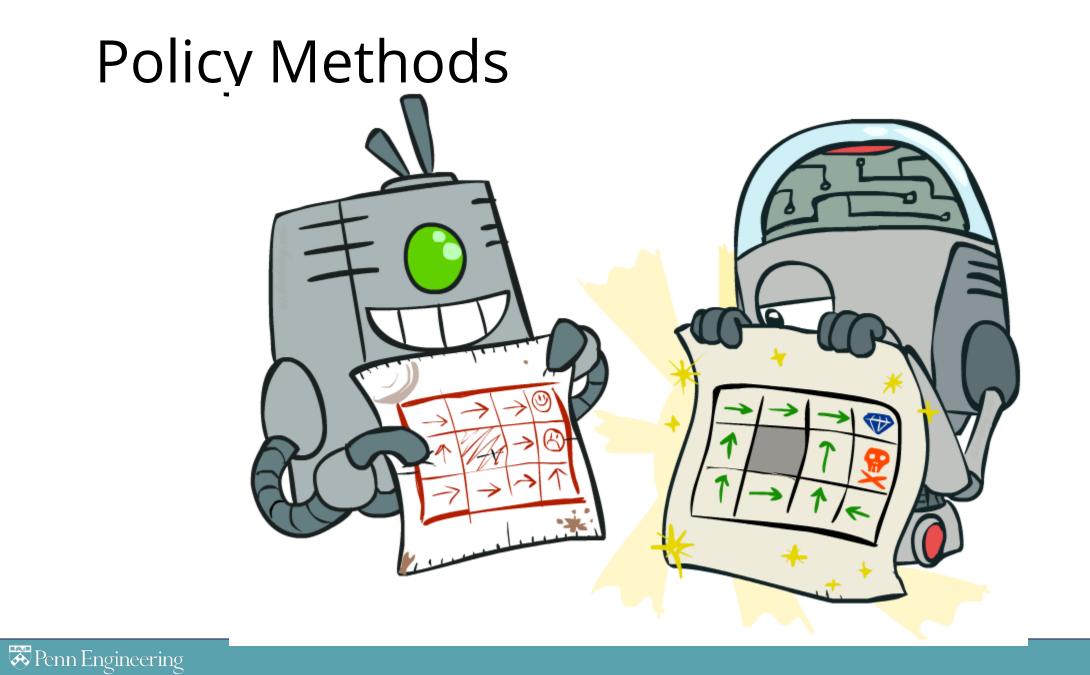
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]^{*}$$

$$S,a,s'$$

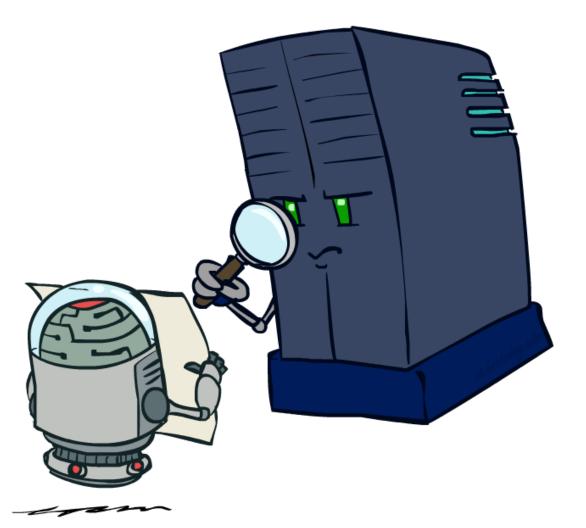
S

s, a

• These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

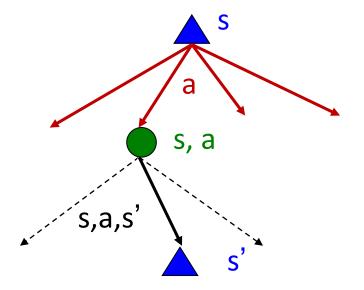


Policy Evaluation

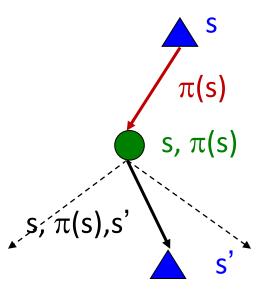


Fixed Policies

Do the optimal action



Do what π says to do

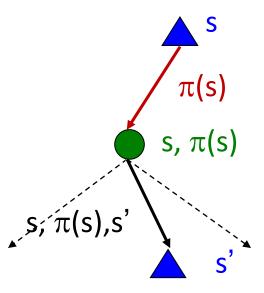


- Expectimax trees max over all actions to compute the optimal values
- o If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
- ... though the tree's value would depend on which policy we fixed
 Renn Engineering

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s) = expected total discounted rewards starting in s and following <math>\pi$
- Recursive relation (one-step look-ahead / Bellman equation):

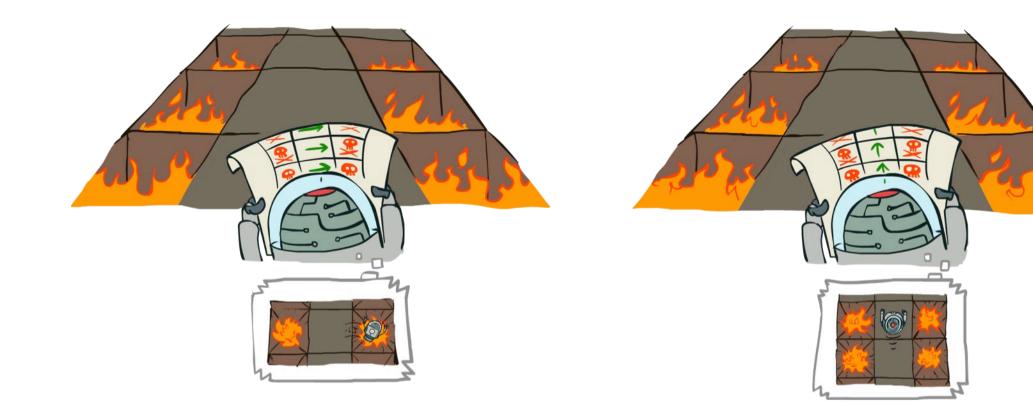
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



Example: Policy Evaluation

Always Go Right

Always Go Forward



Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward



Renn Engineering

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

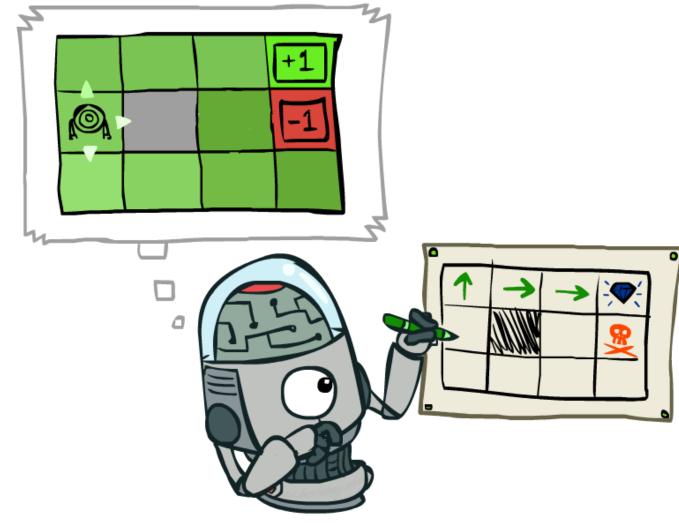
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)



Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one ster

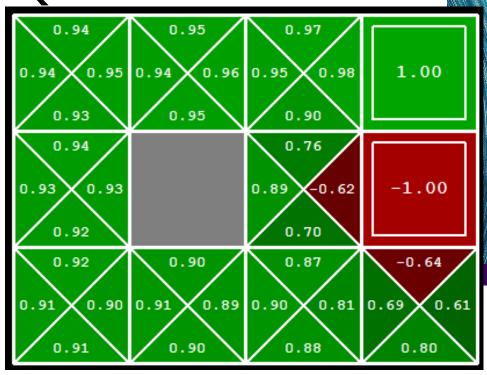
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

 This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

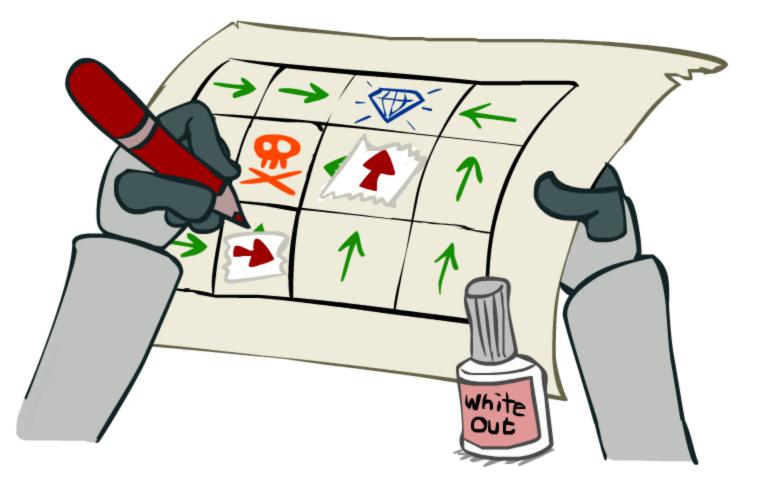
- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



Important lesson: actions are easier to select from q-values than values!

Policy Iteration

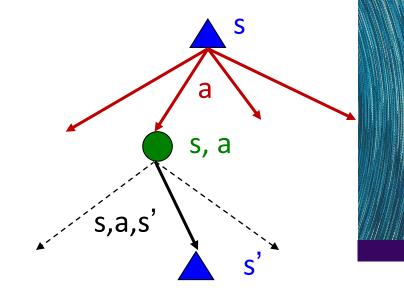


Problems with Value Iteration

• Value iteration repeats the Bellman updates: $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

 \circ Problem 1: It's slow – O(S²A) per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values



0 0	Gridworl	d Display	
		•	
0.00	0.00	0.00	0.00
		^	
0.00		0.00	0.00
		^	
0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS

0 0	0	Gridwor	ld Display	
	▲ 0.00	• 0.00	0.00 >	1.00
	• 0.00		∢ 0.00	-1.00
	• 0.00	•	• 0.00	0.00

VALUES AFTER 1 ITERATIONS

0 0	0	Gridworld	d Display	
	▲ 0.00	0.00 >	0.72)	1.00
	• 0.00		• 0.00	-1.00
	• 0.00	▲ 0.00	• 0.00	0.00

VALUES AFTER 2 ITERATIONS

0	0	Gridworl	d Display	
	0.00)	0.52 →	0.78)	1.00
	• 0.00		• 0.43	-1.00
	•	• 0.00	•	0.00
				-

VALUES AFTER 3 ITERATIONS

0 0	0	Gridworl	d Display	
	0.37 ♪	0.66)	0.83)	1.00
	•		• 0.51	-1.00
	•	0.00 →	• 0.31	∢ 0.00

VALUES AFTER 4 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

00	0	Gridworl	d Display	
	0.51)	0.72)	0.84)	1.00
	• 0.27		• 0.55	-1.00
	• 0.00	0.22 →	• 0.37	∢ 0.13

VALUES AFTER 5 ITERATIONS

00	0	Gridworl	d Display	
	0.59)	0.73)	0.85)	1.00
	•		• 0.57	-1.00
	• 0.21	0.31)	• 0.43	∢ 0.19

VALUES AFTER 6 ITERATIONS

0 0	0	Gridworl	d Display	
	0.62)	0.74 →	0.85)	1.00
	^		^	
	0.50		0.57	-1.00
	^		^	
	0.34	0.36 →	0.45	∢ 0.24

VALUES AFTER 7 ITERATIONS

000	Gridworl	d Display	
0.63)	0.74)	0.85)	1.00
• 0.53		• 0.57	-1.00
• 0.42	0.39)	•	∢ 0.26

VALUES AFTER 8 ITERATIONS

000)	Gridworld	d Display	
	0.64 →	0.74 →	0.85)	1.00
	• 0.55		• 0.57	-1.00
	0. 46	0.40 →	• 0.47	◀ 0.27

VALUES AFTER 9 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

000	Gridworl	d Display	
0.64 →	0.74)	0.85)	1.00
• 0.56		• 0.57	-1.00
• 0.48	∢ 0.4 1	• 0.47	◀ 0.27

VALUES AFTER 10 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

Gridworld Display				
0.64)	0.74 →	0.85)	1.00	
0.56		• 0.57	-1.00	
• 0.48	◀ 0.42	• 0.47	◀ 0.27	

VALUES AFTER 11 ITERATIONS

Gridworld Display				
0.64 →	0.74 ▸	0.85 →	1.00	
• 0.57		• 0.57	-1.00	
▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	

VALUES AFTER 12 ITERATIONS

O Gridworld Display					
0.64)	0.74 ▸	0.85)	1.00		
• 0.57		• 0.57	-1.00		
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28		

VALUES AFTER 100 ITERATIONS

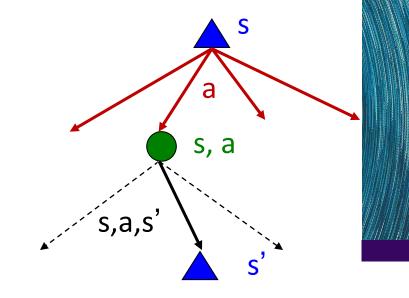
Noise = 0.2 Discount = 0.9 Living reward = 0

Problems with Value Iteration

• Value iteration repeats the Bellman updates: $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

 \circ Problem 1: It's slow – O(S²A) per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values



Policy Iteration

• Alternative approach for optimal values:

- Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
- Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal!) utilities as future values
- Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

• Evaluation: For fixed current policy π , find values with policy evaluation:

• It
$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

• Improvement: For fixed values get a better nolicy using policy $extrial \pi_{i+1}(s) = arg \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$ • One-step took-arread.

Renn Engineering

Comparison

- o Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

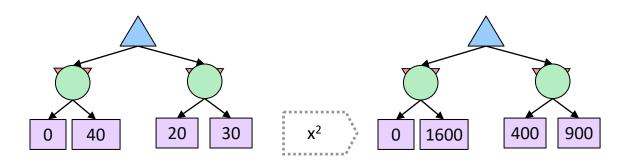
$_{\circ}~$ So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)
- $_{\circ}$ These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
 - A rational agent should choose the action that maximizes its expected utility, given its knowledge
- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - How do we know that averaging even makes sense?
 - What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

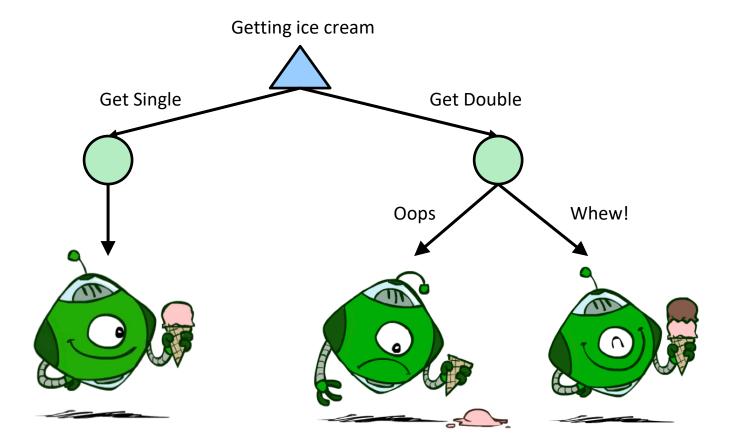


- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need *magnitudes* to be meaningful

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - Why don't we let agents pick utilities?
 - Why don't we prescribe behaviors?

Utilities: Uncertain Outcomes

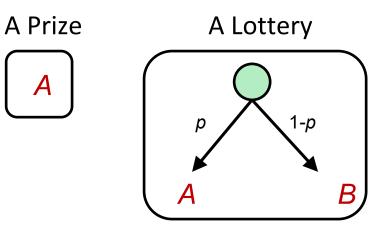


😽 Penn Engineering

Preferences

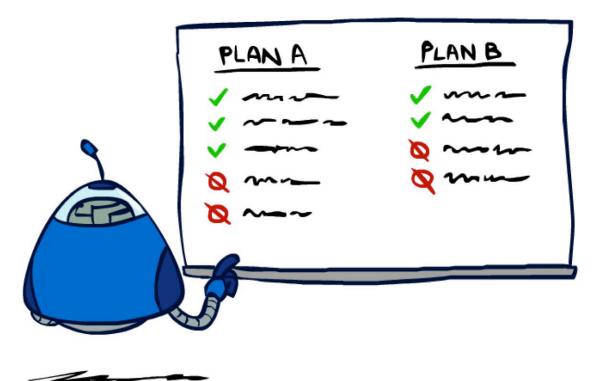
- An agent must have preferences among:
 - Prizes: *A*, *B*, etc.
 - Lotteries: situations with uncertain prizes

L = [p, A; (1 - p), B]



- Notation: $A \succ B$
 - Preferenc $A \sim B$
 - Indifference:

Rationality

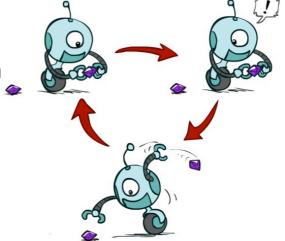


Rational Preferences

We want some constraints on preferences before we call them rational, such as:

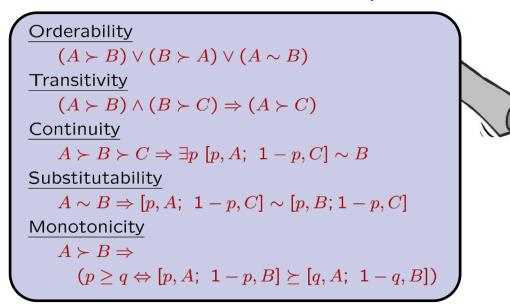
Axiom of Transitivity: $(A \succ B) \land (B \succ C) \Longrightarrow (A \succ C)$

- For example: an agent with intransitive preferences can be induced to give away all of its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C



Rational Preferences

The Axioms of Rationality



Theorem: Rational preferences imply behavior describable as maximization of expected utility

6

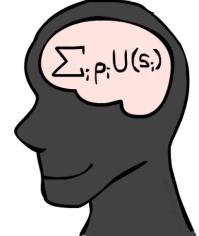
MEU Principle

- o Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a realvalued function U such that:

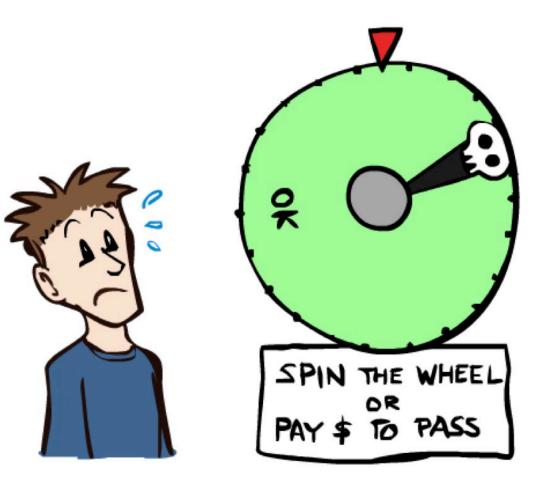
 $U(A) \ge U(B) \Leftrightarrow A \succeq B$

 $U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner



Human Utilities



Utility Scales

- Normalized utilities: $u_{+} = 1.0$, $u_{-} = 0.0$
- Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- OALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- Note: behavior is invariant under positive linear transformation

 $U'(x) = k_1 U(x) + k_2$ where $k_1 > 0$

 With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Micromort examples

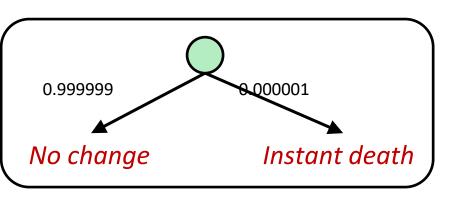
Death from	Micromorts per exposure
Scuba diving	5 per dive
Skydiving	7 per jump
Base-jumping	430 per jump
Climbing Mt. Everest	38,000 per ascent

1 Micromort		
Train travel	6000 miles	
Jet	1000 miles	
Car	230 miles	
Walking	17 miles	
Bicycle	10 miles	
Motorbike	6 miles	

🐯 Penn Engineering

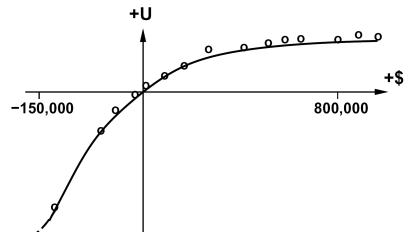
Human Utilities

- o Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human
 - Compare a prize A to a standard lottery L_p between
 - "best possible prize" u₊ with probability p
 - "worst possible catastrophe" u_ with probability 1-p
 - Adjust lottery probability p until indifference: A ~ L_p
 - Resulting p is a utility in [0,1]



Money

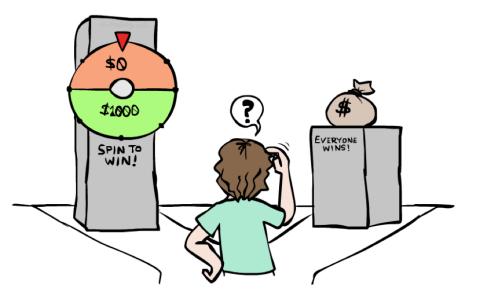
- Money <u>does not</u> behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
 - The expected monetary value EMV(L) is p*X + (1-p)*Y
 - U(L) = p*U(\$X) + (1-p)*U(\$Y)
 - Typically, U(L) < U(EMV(L))
 - In this sense, people are risk-averse
 - When deep in debt, people are risk-prone



DAU.

Example: Insurance

- Consider the lottery [0.5, \$1000; 0.5, \$0]
 - What is its expected monetary value? (\$500)
 - What is its certainty equivalent?
 - Monetary value acceptable in lieu of lottery
 - \$400 for most people
 - Difference of \$100 is the insurance premium
 - There's an insurance industry because people will pay to reduce their risk
 - If everyone were risk-neutral, no insurance needed!
 - It's win-win: you'd rather have the \$400 and the insurance company would rather have the lottery (their utility curve is linear and they have many lotteries)



Example: Human Rationality?

o Famous example of Allais (1953) ←

- A: [0.8, \$4k; 0.2, \$0]
- B: [1.0, \$3k; 0.0, \$0]
- C: [0.2, \$4k; 0.8, \$0]
- D: [0.25, \$3k; 0.75, \$0]
- Most people prefer B > A, C > D
- \circ But if U(\$0) = 0, then

😽 Penn Engineering

- B > A ⇒ U(\$3k) > 0.8 U(\$4k)
- C > D ⇒ 0.8 U(\$4k) > U(\$3k)

