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Uncertain Outcomes
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Idea: Uncertain outcomes controlled by chance, not an adversary!
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Expectimax Search
o Why wouldn’t we know what the result of an action will be?

▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the opponent isn’t optimal
▪ Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under optimal 
play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is 

uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

o Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes
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Expectimax Pseudocode

CIS 521  |  12

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor) 
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v
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Expectimax Pseudocode
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def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor) 
v += p * value(successor)

return v
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…

…492 362

400 300

Estimate of true expectimax value (which would 
require a lot of work to compute)
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Probabilities
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Probabilities
o A random variable represents an event whose outcome is unknown
o A probability distribution is an assignment of weights to outcomes

o Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: 𝑃𝑃 𝑇𝑇 = none = 0.25, 𝑃𝑃 𝑇𝑇 = light = 0.50, 𝑃𝑃 𝑇𝑇 = heavy = 0.25

o Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

o As we get more evidence, probabilities may change:
▪ 𝑃𝑃 𝑇𝑇 = heavy = 0.25, 𝑃𝑃 𝑇𝑇 = heavy | Hour = 8am = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later
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Probabilities
o The expected value of a function of a random variable is the average, weighted by 

the probability distribution over outcomes
o Example: How long to get to the airport?
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What Probabilities to Use?

o In expectimax search, we have a probabilistic model of how the 
opponent (or environment) will behave in any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of 

computation
▪ We have a chance node for any outcome out of our control: 

opponent or environment
▪ The model might say that adversarial actions are likely!

o For now, assume each chance node magically comes along with 
probabilities that specify the distribution over its outcomes
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Having a probabilistic 
belief about another 

agent’s action does not 
mean that the agent is 

flipping any coins!
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o Objectivist / frequentist answer:
▪ Averages over repeated experiments
▪ E.g. empirically estimating P(rain) from historical observation
▪ Assertion about how future experiments will go (in the limit)
▪ New evidence changes the reference class
▪ Makes one think of inherently random events, like rolling dice

o Subjectivist / Bayesian answer:
▪ Degrees of belief about unobserved variables
▪ E.g. an agent’s belief that it’s raining, given the temperature
▪ E.g. agent’s belief how an opponent will behave, given the state
▪ Often learn probabilities from past experiences (more later)
▪ New evidence updates beliefs (more later)
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Quiz: Informed Probabilities
o Let’s say you know that your opponent is actually running a depth 2 minimax, using 

the result 80% of the time, and moving randomly otherwise
o Question: What tree search should you use?  
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0.1          
0.9

 Answer: Expectimax!
 To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent
 This kind of thing gets very slow very quickly
 Even worse if you have to simulate your 

opponent simulating you…
 … except for minimax, which has the nice 

property that it all collapses into one game tree



CIS 550   |   Property of Penn Engineering   |   16

o Dice rolls increase b: 21 possible rolls with 2 dice
▪ Backgammon ≈ 20 legal moves
▪ Depth 2  20 × 21 × 20 3 = 1.2 × 109

o As depth increases, probability of reaching a given search node 
shrinks
▪ So usefulness of search is diminished
▪ So limiting depth is less damaging
▪ But pruning is trickier…

o Historic AI: TDGammon uses depth-2 search + very good evaluation 
fuanction + reinforcement learning  world-champion level play

o 1st AI world champion in any game!

CIS 521  |  23



CIS 550   |   Property of Penn Engineering   |   17

o E.g. Backgammon
o Expectiminimax

▪ Environment is an extra “random 
agent” player that moves after each 
min/max agent

▪ Each node computes the appropriate 
combination of its children
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Max nodes

Chance nodes

Min nodes
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Navigating an Asteroid Field

o Suppose we have a fully-observable 4x3 
environment with goal states.  

o The millennium falcon begins in the start 
state and picks an action at each time 
step.

o Actions: Up, Down, Left, Right
o The game terminates when it reaches a 

goal state (+1 or -1). 
o If the environment were deterministic, 

the solution would be easy:
o [Up, Up, Right, Right, Right]
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Navigating an Asteroid Field

o Instead of making the environment 
deterministic, we will make it stochastic. 

o If the Falcon selects the action Up then it 
only moves up 80% of the time.

o 10% of the time the weird gravity fields 
cause it to veer off to the left or right. 
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Transition Model:
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0.8

0.1 0.1

–1–1

+1



Navigating an Asteroid Field

o For action sequence 
o [Up, Up, Right, Right, Right], 

o what’s the probability that the 
millennium falcon reaches the 
intended goal? 
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Navigating an Asteroid Field
o For action sequence 

o [Up, Up, Right, Right, Right], 
o what’s the probability that the millennium 

falcon reaches the intended goal? 
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Transition Model:
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Navigating an Asteroid Field

o For action sequence 
o [Up, Up, Right, Right, Right], 

o what’s the probability that the millennium 
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Navigating an Asteroid Field
o For action sequence 
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o what’s the probability that the millennium 
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Navigating an Asteroid Field
o For action sequence 

o [Up, Up, Right, Right, Right], 
o what’s the probability that the millennium 
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Navigating an Asteroid Field
o For action sequence 
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o what’s the probability that the millennium 

falcon reaches the intended goal? 

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

0.8 * 0.8

Action: 
Right

* 0.8 * 0.8 * 0.8

= 0.32768

–1–1

+1



Navigating an Asteroid Field

o For action sequence 
o [Up, Up, Right, Right, Right], 

o what’s the probability that the millennium 
falcon reaches the intended goal? 

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

–1–1

+1



Navigating an Asteroid Field

o For action sequence 
o [Up, Up, Right, Right, Right], 

o what’s the probability that the millennium 
falcon reaches the intended goal? 

1 2 3 4

1

2

3

Transition Model:

Action: Up

0.8

0.1 0.1

0.1 –1–1

+1



Navigating an Asteroid Field

o For action sequence 
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Navigating an Asteroid Field

o For action sequence 
o [Up, Up, Right, Right, Right], 

o what’s the probability that the millennium 
falcon reaches the intended goal? 
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Navigating an Asteroid Field
o For action sequence 

o [Up, Up, Right, Right, Right], 
o what’s the probability that the millennium 

falcon reaches the intended goal? 

1 2 3 4

1
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Transition Model:
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Right
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Navigating an Asteroid Field

o For action sequence 
o [Up, Up, Right, Right, Right], 

o what’s the probability that the millennium 
falcon reaches the intended goal? 

1 2 3 4

1

2

3

Transition Model:

0.8

0.1

0.1

Action: 
Right

= 0.32776

–1–1

+1

0.32768 + 0.00008 The odds of 
successfully navigating 

an asteroid field



Stochastic Transition Model

o In our search algorithms so far, the 
transition model was deterministic and 
described the outcome of each action in 
each state.

o The transition function is sometimes 
written as T(s, a, s’), or explicitly as a 
probability:

The probability of arriving in state s’

given that we are in state s and 
we selected action a

p( s’ | s, a ) 

Action: Up

0.8

0.1 0.1



Stochastic Transition Model

o In our search algorithms so far, the 
transition model was deterministic and 
described the outcome of each action in 
each state.

o The transition function is sometimes 
written as T(s, a, s’), or explicitly as a 
probability:

p( s’ | s, a ) 

Transitions are Markovian: 
the probability of arriving in s’ 

only depends on s and not 
the history of earlier states.

Action: Up

0.8

0.1 0.1
Andrey Markov (1856-

1922)



Reward function 

o We will specify a utility or reward function for the agent.
o The “rewards“ can be positive or negative but are bounded by some maximum value.
o Because the decision process is sequential, we must specify the utility function on a 

sequence of states and actions. 
o Instead of only giving a reward at the goal states, the agent can receive a reward at each 

time step, based on its transition from s to s’ via action a.
o This is defined by a reward function
o R( s, a, s’ ) 
o For example, we could give the Millennium Falcon a small negative reward of -0.04 for every 

transition except for entering the terminal states (+1 for entering the planet’s orbit or -1 for 
smashing into an asteroid). 

o The rewards are additive, so if the Millennium Falcon takes 4 steps before entering the 
planet's orbit, it gets -0.04 + -0.04 + -0.04 + -0.04 + 1 = 0.84 for that solution.



Markov Decision Process

o A Markov decision process or MDP is 
• a sequential decision problem 
• for a fully observable environment
• with a stochastic transition model
• that has additive rewards

o MDPs are non-deterministic search 
problems.  One way of solving them is via 
expectimax search.  
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Expectimax node: outcome is 
uncertain. In expectimax search 

we calculate their expected utilities.



Markov Decision Process

o To find a solution to an MDP, you need to define the following things:
• A set of states s ∈ S
• A set of actions a ∈ A
• A transition function T(s, a, s’)

▪ Probability that executing action a in s will lead to s’ P(s’ | s, a)
▪ The probability is called the model

• A reward function R(s, a, s’)
▪ Sometimes just R(s) or R(s’)

• An initial state s0

• Optionally, one or more terminal states



Solution == Policy

o In search problems a solution was a 
sequence of action that corresponded to 
the shortest path.

o Because of the non-determinism in MDPs 
we cannot simply give a sequence of 
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action 
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Policy 𝝿𝝿 tells the agent what action 
to take at state s.

This is an example 
policy for a grid world
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Solution == Policy

o In search problems a solution was a plan: a 
sequence of action that corresponded to 
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs 
we cannot simply give a sequence of 
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action 
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

Even though the policy told me to go 
right here, there’s no guarantee that me 
picking the action Right will result in me 

moving right. It’s stochastic! 
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Solution == Policy

o In search problems a solution was a plan: a 
sequence of action that corresponded to 
the shortest path from the start to a goal.

o Because of the non-determinism in MDPs 
we cannot simply give a sequence of 
actions.

o Instead, the solution to an MDP is a policy.
A policy maps from a state onto the action 
to take if the agent is in that state.

o 𝝿𝝿(s) = a

–1

+1

or

We will use 𝝿𝝿* to 
denote the 

optimal policy.



Policies and Rewards
o Even if the same policy is executed multiple times by the 

agent, this may lead to different sequence of states and 
actions (environment history), and thus a different score 
under the reward function. 

o Therefore we need to compute the expected utility of all 
the possible paths generated by a policy.

–1

+1

r < -1.65

–1

+1

-0.03 < r < 0

ç

–1

+1

r > 0

–1

+1

r = -0.04

r is the reward 
per action



Sequences of Rewards
o The performance of an agent in an MDP is the sum 

of the rewards for the transitions it takes.

o Uh([ s0, a0,  s1, a1  …,   sn])
ç

–1

+1

r > 0

Bounce around forever, 
and avoid the exits …

infinite rewards!!

Utility function on an 
environment history.

Sequence of states 
and actions

= R(s0, a0,  s1) + R(s1, a1,  s2 ) + … + R(sn-1, an-1,  sn ) 



Utilities of Sequences

Slides courtesy of Dan Klein and Pieter Abbeel
University of California, Berkeley



Utilities of Sequences

o What preferences should an agent have over reward 
sequences?

o More or less?

o Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting
o It’s reasonable to maximize the sum of rewards
o It’s also reasonable to prefer rewards now to rewards later
o One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting
o How to discount?

▪ Each time we descend a level, we 
multiply in the discount once

o Why discount?
▪ Sooner rewards probably do have 

higher utility than later rewards
▪ Also helps our algorithms converge

o Example: discount of 0.5
▪ U([1,2,3]) = 0.50*1 + 0.51*2 + 0.52*3 

= 1*1 + 0.5*2 + 0.25*3
▪ U([1,2,3]) < U([3,2,1])



Stationary Preferences
o Theorem: if we assume stationary preferences:

o Then: there are only two ways to define utilities
▪ Additive utility:

▪ Discounted utility:



Infinite Utilities?!
 Problem: What if the game lasts forever?  Do we get infinite 

rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (π depends on time left)

 Discounting: use 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will 
eventually be reached (like “overheated” for racing)



Recap: Defining MDPs
o Markov decision processes:

▪ Set of states S
▪ Start state s0
▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount γ)

o MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’
s’



Example Hyperdrive MDP
The Millennium Falcon needs to travel far far away, quickly
Three states: Cruising, Hyperspace, Crashed
Two actions: Maintain speed, Punch it
Going faster gets double reward

Cruising

Hyperspace

Crashed

Punch It

Punch It

Maintain

Maintain

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



MDP Search Trees
o Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

s,a,s’

s is a state

(s, a) is a q-state

(s,a,s’) is called a transition
T(s,a,s’) = P(s’|s,a)

R(s,a,s’)



Hyperdrive Search Tree

+1 +2 +2 

+1 +1 +1 +2 +2 +2 +2 +1 -10 



Optimal Quantities
 The value (utility) of a state s:

V*(s) = expected utility starting in s and 
acting optimally

 The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

 The optimal policy:
π*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Values of States

o Fundamental operation: compute the (expectimax) value of a state
▪ Expected utility under optimal action
▪ Average sum of (discounted) rewards
▪ This is just what expectimax computed!

o Recursive definition of value:

a

s

s, a

s,a,s’
s’



Racing Search Tree



Racing Search Tree



Racing Search Tree
o We’re doing way too much 

work with expectimax!

o Problem: States are repeated 
▪ Idea: Only compute needed 

quantities once

o Problem: Tree goes on 
forever
▪ Idea: Do a depth-limited 

computation, but with 
increasing depths until 
change is small

▪ Note: deep parts of the tree 
eventually don’t matter if γ < 
1



Time-Limited Values
o Key idea: time-limited values

o Define Vk(s) to be the optimal value of s if the 
game ends in k more time steps
▪ Equivalently, it’s what a depth-k expectimax would give 

from s



Reminders
o 21 days until the American election.  I voted.  Did you?
o Deadline to register to vote in PA is Monday, Oct 19.

o HW4 due tonight at 11:59pm Eastern.
o Quiz 5 on Adversarial Search is due tomorrow.
o HW5 has been released.  It will be due on Tuesday Oct 20.
o No lecture on Thursday.

o Midterm details:
o * No HW from Oct 20-27.

* Tues Oct 20: Practice midterm released (for credit)
* Saturday Oct 24: Practice midterm is due.
* Midterm available Monday Oct 26 and Tuesday Oct 27.
* 3 hour block.  Open book, open notes, no collaboration.



Computing Time-Limited Values



Value Iteration



Value Iteration
o Start with V0(s) = 0: no time steps left means an expected reward sum of zero

o Given vector of Vk(s) values, do one ply of expectimax from each state:

o Repeat until convergence

o Complexity of each iteration: O(S2A)

o Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

Assume no discount!



Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!



Convergence*
o How do we know the Vk vectors are going to converge?

o Case 1: If the tree has maximum depth M, then VM
holds the actual untruncated values

o Case 2: If the discount is less than 1
▪ Sketch: For any state Vk and Vk+1 can be viewed as depth 

k+1 expectimax results in nearly identical search trees
▪ The difference is that on the bottom layer, Vk+1 has 

actual rewards while Vk has zeros
▪ That last layer is at best all RMAX
▪ It is at worst RMIN
▪ But everything is discounted by γk that far out
▪ So Vk and Vk+1 are at most γk max|R| different
▪ So as k increases, the values converge



The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



The Bellman Equations
o Definition of “optimal utility” via expectimax recurrence gives a simple one-step 

lookahead relationship amongst optimal utility values

o These are the Bellman equations, and they characterize optimal values in a way we’ll 
use over and over
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Policy Methods



Policy Evaluation



Fixed Policies

o Expectimax trees max over all actions to compute the optimal values

o If we fixed some policy π(s), then the tree would be simpler – only one action per state
▪ … though the tree’s value would depend on which policy we fixed

a
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π(s)

s

s, π(s)

s, π(s),s’
s’

Do the optimal action Do what π says to do



Utilities for a Fixed Policy
o Another basic operation: compute the utility of a state s 

under a fixed (generally non-optimal) policy

o Define the utility of a state s, under a fixed policy π:
Vπ(s) = expected total discounted rewards starting in s and following π

o Recursive relation (one-step look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’
s’



Example: Policy Evaluation
Always Go Right Always Go Forward



Example: Policy Evaluation
Always Go Right Always Go Forward



Policy Evaluation

o How do we calculate the V’s for a fixed policy π?

o Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

o Efficiency: O(S2) per iteration

o Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

π(s)

s

s, π(s)
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Policy Extraction



Computing Actions from Values

o Let’s imagine we have the optimal values V*(s)

o How should we act?
▪ It’s not obvious!

o We need to do a mini-expectimax (one step)

o This is called policy extraction, since it gets the policy implied by 
the values



Computing Actions from Q-Values

o Let’s imagine we have the optimal q-values:

o How should we act?
▪ Completely trivial to decide!

o Important lesson: actions are easier to select from q-values than values!



Policy Iteration



Problems with Value Iteration

o Value iteration repeats the Bellman updates:

o Problem 1: It’s slow – O(S2A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value iteration (L9D2)]
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Problems with Value Iteration

o Value iteration repeats the Bellman updates:

o Problem 1: It’s slow – O(S2A) per iteration

o Problem 2: The “max” at each state rarely changes

o Problem 3: The policy often converges long before the values
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Policy Iteration

o Alternative approach for optimal values:
▪ Step 1: Policy evaluation: calculate utilities for some fixed policy 

(not optimal utilities!) until convergence
▪ Step 2: Policy improvement: update policy using one-step look-

ahead with resulting converged (but not optimal!) utilities as 
future values

▪ Repeat steps until policy converges

o This is policy iteration
▪ It’s still optimal!
▪ Can converge (much) faster under some conditions



Policy Iteration

o Evaluation: For fixed current policy π, find values with policy 
evaluation:
▪ Iterate until values converge:

o Improvement: For fixed values, get a better policy using policy 
extraction
▪ One-step look-ahead:



Comparison
o Both value iteration and policy iteration compute the same thing (all optimal values)

o In value iteration:
▪ Every iteration updates both the values and (implicitly) the policy
▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

o In policy iteration:
▪ We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)
▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
▪ The new policy will be better (or we’re done)

o Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

o So you want to….
▪ Compute optimal values: use value iteration or policy iteration
▪ Compute values for a particular policy: use policy evaluation
▪ Turn your values into a policy: use policy extraction (one-step 

lookahead)

o These all look the same!
▪ They basically are – they are all variations of Bellman updates
▪ They all use one-step lookahead expectimax fragments
▪ They differ only in whether we plug in a fixed policy or max over 

actions



Maximum Expected Utility
o Why should we average utilities?  Why not minimax?

o Principle of maximum expected utility:
▪ A rational agent should choose the action that maximizes its expected utility, 

given its knowledge
o Questions:

▪ Where do utilities come from?
▪ How do we know such utilities even exist?
▪ How do we know that averaging even makes sense?
▪ What if our behavior (preferences) can’t be described by utilities?



What Utilities to Use?

o For worst-case minimax reasoning, terminal function scale doesn’t matter
▪ We just want better states to have higher evaluations (get the ordering 

right)
▪ We call this insensitivity to monotonic transformations

o For average-case expectimax reasoning, we need magnitudes to be 
meaningful

0 40 20 30 x2 0 1600 400 900



Utilities

o Utilities are functions from outcomes 
(states of the world) to real numbers 
that describe an agent’s preferences

o Where do utilities come from?
▪ In a game, may be simple (+1/-1)
▪ Utilities summarize the agent’s goals
▪ Theorem: any “rational” preferences can 

be summarized as a utility function

o We hard-wire utilities and let 
behaviors emerge
▪ Why don’t we let agents pick utilities?
▪ Why don’t we prescribe behaviors?



Utilities: Uncertain Outcomes

Getting ice cream

Get Single Get Double

Oops Whew!



Preferences

o An agent must have preferences 
among:
▪ Prizes: A, B, etc.
▪ Lotteries: situations with uncertain 

prizes

o Notation:
▪ Preference:
▪ Indifference:

A                  B

p                1-p

A LotteryA Prize

A



Rationality



o We want some constraints on preferences before we call them rational, 
such as:

o For example: an agent with intransitive preferences can
be induced to give away all of its money
▪ If B > C, then an agent with C would pay (say) 1 cent to get B
▪ If A > B, then an agent with B would pay (say) 1 cent to get A
▪ If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

)()()( CACBBA  ⇒∧Axiom of Transitivity:



Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality



o Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
▪ Given any preferences satisfying these constraints, there exists a real-

valued function U such that:

▪ I.e. values assigned by U preserve preferences of both prizes and 
lotteries!

o Maximum expected utility (MEU) principle:
▪ Choose the action that maximizes expected utility
▪ Note: an agent can be entirely rational (consistent with MEU) without ever 

representing or manipulating utilities and probabilities
▪ E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle



Human Utilities



Utility Scales

o Normalized utilities: u+ = 1.0, u- = 0.0

o Micromorts: one-millionth chance of death, useful for 
paying to reduce product risks, etc.

o QALYs: quality-adjusted life years, useful for medical 
decisions involving substantial risk

o Note: behavior is invariant under positive linear 
transformation

o With deterministic prizes only (no lottery choices), only 
ordinal utility can be determined, i.e., total order on prizes



Micromort examples
Death from Micromorts per exposure

Scuba diving 5 per dive

Skydiving 7 per jump

Base-jumping 430 per jump

Climbing Mt. Everest 38,000 per ascent

1 Micromort

Train travel 6000 miles

Jet 1000 miles

Car 230 miles

Walking 17 miles

Bicycle 10 miles

Motorbike 6 miles



o Utilities map states to real numbers. Which numbers?
o Standard approach to assessment (elicitation) of human utilities:

▪ Compare a prize A to a standard lottery Lp between
• “best possible prize” u+ with probability p
• “worst possible catastrophe” u- with probability 1-p

▪ Adjust lottery probability p until indifference: A ~ Lp

▪ Resulting p is a utility in [0,1]

Human Utilities

0.999999                              0.000001

No change

Pay $30

Instant death



Money

o Money does not behave as a utility function, but we can talk 
about the utility of having money (or being in debt)

o Given a lottery L = [p, $X; (1-p), $Y]
▪ The expected monetary value EMV(L) is p*X + (1-p)*Y
▪ U(L) = p*U($X) + (1-p)*U($Y)
▪ Typically, U(L) < U( EMV(L) )
▪ In this sense, people are risk-averse
▪ When deep in debt, people are risk-prone



Example: Insurance

o Consider the lottery [0.5, $1000;  0.5, 
$0]
▪ What is its expected monetary value?  

($500)
▪ What is its certainty equivalent?

• Monetary value acceptable in lieu of 
lottery

• $400 for most people
▪ Difference of $100 is the insurance 

premium
• There’s an insurance industry because 

people will pay to reduce their risk
• If everyone were risk-neutral, no 

insurance needed!
▪ It’s win-win: you’d rather have the $400 

and the insurance company would 
rather have the lottery (their utility 
curve is linear and they have many 
lotteries)



Example: Human Rationality?

o Famous example of Allais (1953)

▪ A: [0.8, $4k;    0.2, $0]
▪ B: [1.0, $3k;    0.0, $0]

▪ C: [0.2, $4k;    0.8, $0]
▪ D: [0.25, $3k;    0.75, $0]

o Most people prefer B > A, C > D

o But if U($0) = 0, then
▪ B > A ⇒ U($3k) > 0.8 U($4k)
▪ C > D ⇒ 0.8 U($4k) > U($3k)
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