
CIS 421/521:  
ARTIFICIAL INTELLIGENCE 
CIS 421/521:  
ARTIFICIAL INTELLIGENCE 

Search 
Problems



Problem Solving Agents &
Problem Formulation
AIMA 3.1-3.3

2



Reflex Agents

o A simple reflex agent is 
one that selects an action 
based only on the current 
percept.

o It ignores the rest of the 
percept history.



Problem-Solving Agent 

o A problem-solving agent 
must plan ahead. 

o The computational process 
that it undertakes is called 
search. 

o It will consider a sequence 
of actions that form a path
to a goal state.

o Such a sequence is called a 
solution.

o



Impact of Task Environments

o The properties of the task environments change the types of solutions that we 
need. 

o If an environment is:
• Fully observable
• Deterministic
• Known environment
o The solution to any problem in such an environment is a fixed sequence of actions.

o In environments that are
• Partially observable or 
• Nondeterministic
o The solution must recommend different future actions depending on the what 

percepts it receives.  This could be in the form of a branching strategy.



Example search problem: 8-puzzle

o Formulate goal
▪ Pieces to end up 

in order 
as shown…

o Formulate search problem
▪ States: configurations of the puzzle (9! configurations)
▪ Actions: Move one of the movable pieces (≤4 possible)
▪ Performance measure: minimize total moves

o Find solution
▪ Sequence of pieces moved:  3,1,6,3,1,…

6



Example search problem: Holiday in Romania

7

You are here

You need to 
be here



Holiday in Romania

o On holiday in Romania; currently in Arad
▪ Flight leaves tomorrow from Bucharest

o Formulate goal
▪ Be in Bucharest

o Formulate search problem
▪ States: various cities
▪ Actions: drive between cities
▪ Performance measure: minimize travel time / distance

o Find solution
▪ Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest, …

8



More formally, a problem is defined by:

1. States: a set S
2. An initial state si∈S
3. Actions: a set A

∀ s Actions(s) = the set of actions that can be executed in s, that are applicable in s.
4. Transition Model: ∀ s∀ a∈Actions(s) Result(s, a) → sr

sr is called a successor of s 
{si }∪ Successors(si )* = state space

5. Path cost (Performance Measure): Must be additive
e.g. sum of distances, number of actions executed, …
c(x,a,y) is the step cost, assumed ≥ 0

o (where action a goes from state x to state y)
6. Goal test: Goal(s)

Can be implicit, e.g. checkmate(s)
s is a goal state if Goal(s) is true

9



Vacuum World
o States: A state of the world 

says which objects are in which 
cells.

o In a simple two cell version, the 
agent can be in either cell each 
cell can have dirt or not

o 2 cells * 2 positions for agent * 
2 possibilities for dirt = 8 states.

o With n cells, there are n*2n

states. 

One state is 
designated as the 

initial state



Vacuum World

o Actions: 
• Suck
• Move Left
• Move Right
• (Move Up)
• (Move Down)

Goal states: 
States where 

everything is clean.

Transition: 
Suck – removes dirt
Move – moves in that direction, unless agent 
hits a wall, in which case it stays put.

Action Cost: Each 
action costs 1



Solutions & Optimal Solutions

▪ A solution is a sequence of actions from the initial state to a 
goal state.

▪ Optimal Solution: A solution is optimal if no solution has a 
lower path cost.

12



Art: Formulating a Search Problem

Decide:
o Which properties matter & how to represent

▪ Initial State, Goal State, Possible Intermediate States
o Which actions are possible & how to represent

▪ Operator Set: Actions and Transition Model
o Which action is next

▪ Path Cost Function

o Formulation greatly affects combinatorics of search space and therefore 
speed of search

13



States? List of 9 locations- e.g., [7,2,4,5,-,6,8,3,1]
Initial state? [7,2,4,5,-,6,8,3,1]
Actions? {Left, Right, Up, Down}  
Transition Model? ...
Goal test? Check if goal configuration is reached
Path cost? Number of actions to reach goal

Example: 8-puzzle

14



Example: 8-puzzle

o States? List of 9 locations- e.g., [7,2,4,5,-,6,8,3,1]
o Initial state? [7,2,4,5,-,6,8,3,1]
o Actions? {Left, Right, Up, Down}  
o Transition Model? ...
o Goal test? Check if goal configuration is reached
o Path cost? Number of actions to reach goal

15



Hard subtask: Selecting a state space

o Real world is absurdly complex
State space must be abstracted for problem solving

o (abstract) State = set (equivalence class) of real-world states

o (abstract) Action = equivalence class of combinations of real-world 
actions
▪ e.g. Arad → Zerind represents a complex set of possible routes, detours, rest stops, 

etc
▪ The abstraction is valid if the path between two states is reflected in the real world

o Each abstract action should be “easier” than the real problem

16

What are the states 
for the Romanian 

Navigation problem?



Useful Concepts

o State space: the set of all states reachable from the initial state by any
sequence of actions

▪ When several operators can apply to each state, this gets large very quickly

▪ Might be a proper subset of the set of configurations

o Path: a sequence of actions leading from one state sj to another state sk

o Frontier: those states that are available for  expanding (for applying legal 
actions to)

o Solution: a path from the initial state si to a state sf that satisfies the goal test

17

Unreachable states 
in Romania? Tile 

Puzzles?



Basic search algorithms: Tree Search

o Generalized algorithm to solve search problems 
o Enumerate in some order all possible paths from the initial state

▪ Here: search through explicit tree generation
• ROOT= initial state.
• Nodes in search tree generated through transition model
• Tree search treats different paths to the same node as distinct

18



Generalized tree search

function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize frontier  to the initial state of the problem

do 

if the frontier is empty then return failure

choose leaf node for expansion according to strategy & remove from frontier

if node contains goal state then return solution

else expand the node and add resulting nodes to the frontier 19

The strategy 
determines search 

process!



8-Puzzle: States and Nodes
o A state is a (representation of a) physical configuration
o A node is a data structure constituting part of a search tree

▪ Also includes parent, children, depth,  path cost g(x)
▪ Here node= <state, parent-node, children, action, path-cost, depth>

o States do not have parents, children, depth or path cost!

o

o The EXPAND function 
▪ uses the Actions and Transition Model to create the corresponding states

• creates new nodes, 
• fills in the various fields 

20

parent
Action= Up
Cost = 6 
Depth = 6

children

state

NodeState

7 2 4
5 6 1
8 3



8-Puzzle Search Tree 

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
5 6

8 3 1

7 2 4
5 6
8 3 1

7 4
5 2 6
8 3 1

7 4
5 2 6
8 3 1

7 2 4
8 5 6

3 1

2 4
7 5 6
8 3 1

7 2 4
5 6 1
8 3

7 2
5 6 4
8 3 1

(Nodes show state, parent, 
children - leaving Action, Cost, 
Depth Implicit)

21

(Suppressing useless      
“backwards” moves)



Problem: Repeated states

o Failure to detect repeated states can turn a linear problem into an 
exponential one!

22



Solution: Graph Search!

o Graph search

▪ Simple Mod from tree search: Check to see if a 
node has been visited before adding to search 
queue
• must keep track of all possible states (can use a lot of 

memory)
• e.g., 8-puzzle problem, we have 9!/2 ≈182K states

23

S

B

C

S

B C

SC B S

State Space
Search Tree

Note the 
distinction 
between 

“node” and 
“state.”



Graph Search vs Tree Search

24



Uninformed Search 
Strategies

AIMA 3.3-3.4

25



26

Uninformed search strategies:

o AKA “Blind search”
o Uses only information available in problem definition

o Informally:
o Uninformed search: All non-goal nodes in frontier look equally good
o Informed search: Some non-goal nodes can be ranked above 

others.  

26

Quick Check: 
Uninformed vs. 

Informed Search in 
Romania? 



Search Strategies

o Review: Strategy = order of tree expansion
▪ Implemented by different queue structures (LIFO, FIFO, priority)

o Dimensions for evaluation
▪ Completeness- always find the solution?
▪ Optimality  - finds a least cost solution (lowest path cost) first?
▪ Time complexity - # of nodes generated (worst case) 
▪ Space complexity - # of nodes simultaneously in memory (worst case) 

o Time/space complexity variables
▪ b, maximum branching factor of search tree
▪ d, depth of the shallowest goal node
▪ m, maximum length of any path in the state space (potentially ∞)

27



Introduction to space complexity

o You know about:
▪ “Big O” notation
▪ Time complexity

o Space complexity is analogous to time complexity

o Units of space are arbitrary
▪ Doesn’t matter because Big O notation ignores constant multiplicative 

factors
▪ Plausible Space units:

• One Memory word
• Size of any fixed size data structure

o For example, size of fixed size node in search tree

28



Review: Breadth-first search

o Idea: 
▪ Expand shallowest unexpanded node

o Implementation:
▪ frontier is FIFO (First-In-First-Out) Queue:

• Put successors at the end of frontier successor list.

29

Image credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu



Breadth-first search (simplified)

30

The pop is 
how we 

define the 
strategy.

Subtle: we 
goal-test 

before we 
add to 

frontier.



Properties of breadth-first search

o Complete? Yes (if b is finite)
o Time Complexity? 1+b+b2+b3+… +bd = O(bd)
o Space Complexity? O(bd) (keeps every node in memory)
o Optimal? Yes, if cost = 1 per step

(not optimal in general)

b: maximum branching factor of search tree
d: depth of the least cost solution

m: maximum depth of the state space (∞)

32

Is this the only way 
to have BFS be 

optimal?



Exponential Space (and time) Not Good...

▪ Exponential complexity uninformed search problems cannot be solved 
for any but the smallest instances.

▪ (Memory requirements are a bigger problem than execution time.)

Assumes b=10, 1M nodes/sec, 1000 bytes/node

3333

DEPTH NODES TIME MEMORY

2 110 0.11 milliseconds 107  kilobytes

4 11110 11 milliseconds 10.6 megabytes

6 106 1.1 seconds 1 gigabytes

8 108 2 minutes 103 gigabytes

10 1010 3 hours 10 terabytes

12 1012 13 days 1 petabytes

14 1014 3.5 years 99 petabytles



Review: Depth-first search

o Idea: 
▪ Expand deepest unexpanded node

o Implementation:
▪ frontier is LIFO (Last-In-First-Out) Queue:

• Put successors at the front of frontier successor list.

34

Image credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu



Properties of depth-first search

o Complete? No: fails in infinite-depth spaces, spaces with loops
▪ Modify to avoid repeated states along path

 complete in finite spaces

o Time? O(bm): terrible if m is much larger than d
▪ but if solutions are dense, may be much faster than breadth-first

o Space? O(b*m), i.e., linear space!

o Optimal? No

b: maximum branching factor of search tree
d: depth of the least cost solution

m: maximum depth of the state space (∞)

35



Depth-first vs Breadth-first

o Use depth-first if
▪ Space is restricted
▪ There are many possible solutions with long paths and wrong 

paths are usually terminated quickly
▪ Search can be fine-tuned quickly

o Use breadth-first if
▪ Possible infinite paths
▪ Some solutions have short paths
▪ Can quickly discard unlikely paths

36



Search Conundrum

o Breadth-first
 Complete, 
 Optimal
 but uses O(bd) space

o Depth-first
 Not complete unless m is bounded
 Not optimal
 Uses O(bm) time; terrible if m >> d
 but only uses O(b∗m) space

How can we get the best of both?

38



39

Depth-limited search: A building block
o Depth-First search but with depth limit l.

▪ i.e. nodes at depth l  have no successors.
▪ No infinite-path problem!

o If l = d (by luck!), then optimal
▪ But:

• If l < d then incomplete 
• If l > d then not optimal 

o Time complexity:
o Space complexity: 

39

( )lO b

 

O(bl)



Iterative deepening search
o A general strategy to find best depth limit l.

▪ Key idea: use Depth-limited search as subroutine, 
with increasing l.
For l = 0 to ∞ do

depth-limited-search to level l
if it succeeds

then return solution

▪ Complete & optimal: Goal is always found at depth 
d, the depth of the shallowest goal-node.

Could this possibly be efficient?

40



Nodes constructed at each deepening

o Depth 0: 0  (Given the node, doesn’t construct it.)

o Depth 1: b1 nodes

o Depth 2: b nodes + b2 nodes

o Depth 3: b nodes + b2 nodes + b3 nodes
o …

41



Total nodes constructed:

o Depth 0: 0  (Given the node, doesn’t construct it.)
o Depth 1: b1 = b nodes
o Depth 2: b nodes + b2 nodes

• Depth 3: b nodes + b2 nodes + b3 nodes
• …

o Suppose the first  solution is the last node at depth 3:
o Total nodes constructed:
o 3*b nodes + 2*b2 nodes + 1*b3 nodes

42



43

ID search, Evaluation: Time Complexity

• More generally, the time complexity is
▪ (d)b + (d-1)b2 + … + (1)bd = O(bd)

o As efficient in terms of O(…) as Breadth First Search: 
▪ b + b2 + … + bd =  O(bd)

43



ID search, Evaluation

o Complete: YES (no infinite paths) 

o Time complexity:

o Space complexity:                        

o Optimal: YES if step cost is 1. 

44

 

O(bd )

( )O bd



Summary of algorithms

Criterion Breadth-
First

Depth-
First

Depth-
limited

Iterative 
deepening

Complete? YES NO NO YES

Time bd bm bl bd

Space bd bm bl bd

Optimal? YES NO NO YES

45



Next Up: Informed Search
AIMA 3.5-3.6

46



Informed Search

o An informed search strategy uses 
domain-specific information 
about the location of the goals in 
order to find a solution more 
efficiently than uninformed 
search.

o Hints will come as part of a 
heuristic function denoted h(n).

o One of the most famous informed 
search algorithms is A* which was 
developed for robot navigation. 

Shakey the robot was developed 
at the Stanford Research Institute  
from 1966 to 1972.

https://www.youtube.com/watch?v=7bsEN8mwUB8

https://www.youtube.com/watch?v=7bsEN8mwUB8

	Search Problems
	Problem Solving Agents &�Problem Formulation
	Reflex Agents
	Problem-Solving Agent 
	Impact of Task Environments
	Example search problem: 8-puzzle
	Example search problem: Holiday in Romania
	Holiday in Romania
	More formally, a problem is defined by:
	Vacuum World
	Vacuum World
	Solutions & Optimal Solutions
	Art: Formulating a Search Problem
	Example: 8-puzzle
	Example: 8-puzzle
	Hard subtask: Selecting a state space
	Useful Concepts
	Basic search algorithms: Tree Search
	Generalized tree search
	8-Puzzle: States and Nodes
	Slide Number 21
	Problem: Repeated states
	Solution: Graph Search!
	Graph Search vs Tree Search
	Uninformed Search Strategies�
	Uninformed search strategies:
	Search Strategies
	Introduction to space complexity
	Review: Breadth-first search
	Breadth-first search (simplified)
	Properties of breadth-first search
	Exponential Space (and time) Not Good...
	Review: Depth-first search
	Properties of depth-first search
	Depth-first vs Breadth-first
	Search Conundrum
	Depth-limited search: A building block
	Iterative deepening search
	Nodes constructed at each deepening
	Total nodes constructed:
	ID search, Evaluation: Time Complexity
	ID search, Evaluation
	Summary of algorithms
	Next Up: Informed Search
	Informed Search

