e,

O

Z Vg

= -

=

m L QO
.1.U CI -
N — O g
g2 VO =2
n & D - okl
O < W) O

o
V)
Jud
C
U
6.0
<
0.0
k=
=
.
v
-
[
O
O
S
o

-
O
=
O
-
=
S
o
LL
-
[T
O
O
S
o

™M
"
o
<
=
<

o0

Penn Engi

e

Reflex Agents

o A simple reflex agent s
one that selects an action
based only on the current
percept.

o Itignores the rest of the
percept history.

@ Penn Engineering

Problem-Solving Agent

o A problem-solving agent
must plan ahead.

o The computational process
that it undertakes is called
search.

o It will consider a sequence
of actions that form a path
to a goal state.

o Such asequence is called a
solution.

Impact of Task Environments

o Thedproperties of the task environments change the types of solutions that we
need.

o If an environment is:
- Fully observable
- Deterministic
- Known environment
o The solution to any problem in such an environment is a fixed sequence of actions.

o In environments that are
- Partially observable or
« Nondeterministic

o The solution must recommend different future actions depending on the what
percepts it receives. This could be in the form of a branching strategy.

@ Penn Engineering

Example search problem: 8-puzzle

7 2 4 1 2
o Formulate gOal 5 6 3 4 5
- Piec%s to end up -
in order
as shown... 8 |f 3 || 1 61l 71| 8
Start State Goal State

o Formulate search problem
= States: configurations of the puzzle (9! configurations)
= Actions: Move one of the movable pieces (<4 possible)
- Performance measure: minimize total moves

o Find solution
= Sequence of pieces moved: 3,1,6,3,1,...

@ Penn Engineering

Example search problem: Holiday in Romania

B __'ﬂ = [] Oradea
Neamt
|
87
75
Arad
Sibiu 99 Fagaras
You are here !!8
80
Timi Rimnicu Vilcea
imisoara O
142
11 T Lo Pitesti \2!!
|
70 98 .
_ 85 Hirsova
[| Mehadia 101 Urziceni
75 138 . 86
Bucharest
Drobeta [] 120
L 90
Craiova [] Giurgiu Eforie

You need to

be here

@ Penn Eng]'neering

Holiday in Romania

o On holiday in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest

o Formulate goal
- Bein Bucharest

o Formulate search problem
- States: various cities
- Actions: drive between cities
- Performance measure: minimize travel time / distance

o Find solution
- Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest, ...

@ Penn Eng]'neering

More formally, a problem is defined by:

1. Stotes: a set S

An initial state s; €S
Actions: a set A
V's Actions(s) = the set of actions that can be executed in s, that are applicable ins.
4. Transition Model: VsV a€eActions(s) Result(s, a) — s,
s, is called a successor of s
{s; }USuccessors(s;)* = state space
5. Path cost (Performance Measure): Must be additive
e.g. sum of distances, number of actions executed, ...

c(x,a,y) is the step cost, assumed >0
o (where action a goes from state x to state y)

6. Goal test: Goal(s)
Can be implicit, e.g. checkmate(s)
s is a goal state if Goal(s) is true

W N

@ Penn Engineering

One state is
designated as the

Vacuum World initial state

o States: A state of the world 1
saﬁs which objects are in which
cells.

o In asimple two cell version, the
agent can be in either cell each 3
cell can have dirt or not

o 2 cells * 2 positions for agent *
2 possibilities for dirt = 8 states.

o With n cells, there are n*2"
states. 7

SRS NS
K

Vacuum W :
LCAQ“ L faﬁ LC# || ‘&DR
R Goal states:
L) N -
C = . = v, States where
- - everything is clean.

o Actions: Transition:
e Suck Suck — removes dirt
e Move LEft Move — moves in that direction, unless agent

hits a wall, in which case it stays put.

* Move Right
* (Move Up) Action Cost: Each

 (Move Down) action costs 1

‘& Penn Engineering

Solutions & Optimal Solutions

A solution is a sequence of actions from the initial state to a
goal state.

Optimal Solution: A solution is optimal if no solution has a
lower path cost.

‘& Penn Engineering

Art: Formulating a Search Problem

Decide;

o Which properties matter & how to represent
Initial State, Goal State, Possible Intermediate States

o Which actions are possible & how to represent
Operator Set: Actions and Transition Model

o Which action is next
Path Cost Function

o Formulation greatly affects combinatorics of search space and therefore
speed of search

‘& Penn Engineering

Example: 8-puzzle

7 2 4 1 2
5 6 Lalll 4] s
s Il 3|l 1 sl 71l 8
Start State Goal State

States?

Initial state?

Actions?

Transition Model?

Goal test?

Path cost?

Penn Engineering

Example: 8-puzzle

70 2| 4 1| 2
5 6 | 3. 4 (|| 5
8 ||l 3| 1 6l 7] 8
Start State Goal State
States? List of 9 locations- e.g., [7,2,4,5,-,6,8,3,1]
Initial state? [7,2,4,5,-,6,8,3,1]

Actions? {Left, Right, Up, Down}

Transition Model?

Goal test? Check if goal configuration is reached
Path cost? Number of actions to reach goal

O O O O0OO0OO0

‘& Penn Engineering

Hard subtask: Selecting a state space

What are the states

. for the Romanian
o Real world is absurdly complex Navigation problem?

State space must be abstracted for problem solving

o (abstract) State = set (equivalence class) of real-world states

o (abstract) Action = equivalence class of combinations of real-world
actions

e.g. Arad — Zerind represents a complex set of possible routes, detours, rest stops,
etc

The abstraction is valid if the path between two states is reflected in the real world

o Each abstract action should be “easier” than the real problem

‘& Penn Engineering

Unreachable states !
in Romania? Tile
Puzzles?

Useful Concepts

o State space: the set of all states reachable from the initial stat 'y any
sequence of actions

- When several operators can apply to each state, this getgllarge very quickly
- Might be a proper subset of the set of configurations

o Path: a sequence of actions leading from one state s; to another state s,

o Frontier: those states that are available for expanding (for applying legal
actions to)

o Solution: a path from the initial state s; to a state s, that satisfies the goal test

@ Penn Eng]'neering

Basic search algorithms: 7ree Search

o Generalized algorithm to solve search problems

o Enumerate in some order all possible paths from the initial state
- Here: search through explicit tree generation
- ROOT= initial state.
- Nodes in search tree generated through transition model
« Tree search treats different paths to the same node as distinct

‘& Penn Engineering

Generalized tree search

Rimnicu Vilcea

The strategy
determines search
process!

function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize frontier to the initial state of the problem

do
if the frontier is empty then return failure
choose leaf node for expansion according to strategy & remontier
if node contains goal state then return solution
else expand the node and add resulting nodes to the frontier

@ Penn Engineering

19

8-Puzzle: States and Nodes

o Astateis a (representation of a) physical configuration

o A nodeis a data structure constituting part of a search tree

= Also includes parent, children, depth, path cost g(x)
= Here node= <state, parent-node, children, action, path-cost, depth>

o States do not have parents, children, depth or path cost!

State Node
© parent
712 |4 ! Action= Up
5161l . Cost=6
8 |3 state /\ Depth =6
children

o The EXPAND function
= uses the Actions and Transition Model to create the corresponding states
« Creates new nodes,
« fillsin the various fields

@ Penn Engineering

8-Puzzle

(Nodes show state, parent,

children - leaving Action, Cost,

Depth Implicit)/ -\

712 |4
5
8 (3|1

712 |4 7 4

516 512

813 |1 81311
7516 8(516 216 5(2
813 |1 3|1 8§13 |1 813

(Suppressing useless
“backwards” moves)

Problem: Repeated states

o Failure to detect repeated states can turn a linear problem into an
exponential one!

A

‘& Penn Engineering

Solution: Graph Search!
P

7 XK,

State Space
Search Tree

Notethe . Graph search

distinction
between - Simple Mod from tree search: Check to seeg‘a
“node” and node has been visited before adding to searc
i n queue
state. « must keep track of all possible states (can use a lot of
memory)

« e.g., 8-puzzle problem, we have 9!/2 ~182K states

@ Penn Engineering

Graph Search vs Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem

initialize the explored set to be empty
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algo-
rithms. The parts of GRAPH-SEARCH marked in bold italic are the additions needed to
handle repeated states.

@ Penn Engineering

Uninformed Search

Strategies

AIMA 3.3-3.4

Uninformed search strategies: Quick Check:

Uninformed vs.

Informed Search in
o AKA “Blind search” Romania?

o Uses only information available in problem definition

o Informally:

o Uninformed search: All non-goal nodes in frontier look equally good

o Informed search: Some non-goal nodes can be ranked above
others.

@ Penn Engineering

Search Strategies

o Review: Strategy = order of tree expansion
- Implemented by different queue structures (LIFO, FIFO, priority)

o Dimensions for evaluation
- Completeness- always find the solution?
- Optimality - finds a least cost solution (lowest path cost) first?
- Time complexity - # of nodes generated (worst case)
- Space complexity - # of nodes simultaneously in memory (worst case)

o Time/space complexity variables
- b, maximum branching factor of search tree
- d, depth of the shallowest goal node
- m, maximum length of any path in the state space (potentially «)

@ Penn Engineering

Introduction to space complexity

o You know about:
- “Big O” notation
- Time complexity

o Space complexity is analogous to time complexity

o Units of space are arbitrary

. Potesn’t matter because Big O notation ignores constant multiplicative
actors

- Plausible Space units:
« One Memory word

« Size of any fixed size data structure
o For example, size of fixed size node in search tree

@ Penn Engineering

Review: Breadth-first search

- ldea:
Expand shallowest unexpanded node

- Implementation:

- frontieris FIFO (First-In-First-Out) Queue:
- Put successors at the end of frontier successor list.

Image credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

@ Penn Engineering

Breadth-first search (simplified)

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node < a node with STATE = problem INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier < a FIFO queue with node as the only element

The pop is explored «+— an empty set Subtle: we
how we lool?fdé) rontier) then return fal goal-test
. if EMPTY?(frontier) then return failure
define the node < POP(frontier) /* chooses the shallowest node in frontier before we
strategy. add node.STATE to explored add to
for each action in problem.ACTIONS(node.STATE) do frontier.

child < CHILD-NODE(problem, node, action)

if child.STATE is not in ezplored or frontier *.cn
if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier < INSERT(child, frontier)

‘& Penn Engineering

Properties of breadth-first search

o Complete? Yes(if bis finite)
o Time Complexity? 7T+b+b%+b3+... +b? = O(bY)
o Space Complexity? O(b%) (keeps every node in memory)

o Optimal? Yes, if cost =1 per step

(nOt Optlmal in general) Is this the only way
to have BFS be

optimal?

b: maximum branching factor of search tree
d: depth of the least cost solution
m: maximum depth of the state space ()

@ Penn Engineering

Exponential Space (and time) Not Good...

- Exponential complexity uninformed search problems cannot be solved
for any but the smallest instances.

- (Memory requirements are a bigger problem than execution time.)

DEPTH NODES TIME MEMORY
2 110 0.11 milliseconds 107 kilobytes
4 11110 11 milliseconds 10.6 megabytes
6 106 1.1 seconds 1 gigabytes
8 103 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabytes
14 1014 3.5 years 99 petabytles

Assumes b=10, 1M nodes/sec, 1000 bytes/node

@ Penn Engineering

Review: Depth-first search

> ldea:
Expand deepest unexpanded node

- Implementation:

- frontier is LIFO (Last-In-First-Out) Queue:
- Put successors at the front of frontier successor list.

Image credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

@ Penn Engineering

Properties of depth-first search

o Complete? No: fails in infinite-depth spaces, spaces with loops

= Modify to avoid repeated states along path
> complete in finite spaces

o Time? O(b™): terrible if m is much larger than d
= butif solutions are dense, may be much faster than breadth-first

o Space? O(b*m), i.e., linear space!

o Optimal? No

b: maximum branching factor of search tree
d: depth of the least cost solution
m: maximum depth of the state space (x)

@ Penn Eng]'neering

Depth-first vs Breadth-first

o Use depth-first if
- Space is restricted

There are many possible solutions with long paths and wrong
paths are usually terminated quickly

Search can be fine-tuned quickly

> Use breadth-first if
Possible infinite paths
Some solutions have short paths
Can quickly discard unlikely paths

@ Penn Engineering

Search Conundrum

- Breadth-first
VI Complete,

VI Optimal
x| but uses O(bY) space

» Depth-first

x] Not complete unless m is bounded
x] Not optimal
x| Uses O(b™) time; terrible if m >>d
V| but only uses O(b+*m) space

How can we get the best of both?

@ Penn Engineering

Depth-limited search: A building block

o Depth-First search but with depth limit L
l.e. nodes at depth [have no successors.
No infinite-path problem!

o If [=d (by luck!), then optimal
- But:

If (< d then incomplete ®

If /> d then not optimal ®

. Time complexity: O(b")
o Space complexity: O(bl) ©

‘& Penn Engineering

Iterative deepening search

o A general strategy to find best depth limit /.

- Key idea: use Depth-limited search as subroutine,
with increasing l.

For | = 0 to « do
depth-limited-search to level |
if it succeeds

then return solution

- Complete & optimal: Goal is always found at depth
d, the depth of the shallowest goal-node.

Could this possibly be efficient?

@ Penn Engineering

Nodes constructed at each deepening

o Depth 0: 0 (Given the node, doesn’t construct it.)
¢

o Depth 1: b' nodes

o e

o Depth 2: b nodes + b nodes

KN

o Depth 3: b nodes + b2 nodes + b3 nodes

@ Penn Engineering

Total nodes constructed:

o Depth 0: 0 (Given the node, doesn't construct it.)
o Depth 1: b' = b nodes

o Depth 2: b nodes + b2 nodes

e Depth 3: b nodes + b? nodes + b3 nodes

o Suppose the first solution is the last node at depth 3:
o Total nodes constructed:

O 3*b nodes + 2*b? nodes + 1*b3 nodes

@ Penn Engineering

ID search, Evaluation: Time Complexity

- More generally, the time complexity is
(d)b + (d-1)b2 + ... + (1)bd= O(b?)

o Asefficient in terms of O(...) as Breadth First Search:
b+b2+..+bd= ObY)

‘& Penn Engineering

ID search, Evaluation

- Complete: YES (no infinite paths) ©

- Time complexity: O(h*)

- Space complexity: O(bd) ©

- Optimal: YES if step costis 1. ©

‘& Penn Engineering

Summary of algorithms

‘& Penn Engineering

Criterion | Breadth- Depth- Depth- Iterative
First First limited deepening
Complete? | YES NO NO YES
Time bd bm bl bd
Space b? bm bl bd
Optimal? | YES NO NO YES

Informed Search

Next Up

AIMA 3.5-3.6

.

50
=
s
=

—

& Penn E

Informed Search

O An informed search strategy uses
domain-specific information
about the location of the goals in
order to find a solution more
efficiently than uninformed
search.

O Hints will come as part of a
heuristic function denoted h(n).

O One of the most famous informed
search algorithms is A* which was
developed for robot navigation.

Shakey the robot was developed
at the Stanford Research Institute
from 1966 to 1972.

‘& Penn Engineering

RADIO_LINK

https://www.youtube.com/watch?v=7bsEN8mwUBS8

https://www.youtube.com/watch?v=7bsEN8mwUB8

	Search Problems
	Problem Solving Agents &�Problem Formulation
	Reflex Agents
	Problem-Solving Agent
	Impact of Task Environments
	Example search problem: 8-puzzle
	Example search problem: Holiday in Romania
	Holiday in Romania
	More formally, a problem is defined by:
	Vacuum World
	Vacuum World
	Solutions & Optimal Solutions
	Art: Formulating a Search Problem
	Example: 8-puzzle
	Example: 8-puzzle
	Hard subtask: Selecting a state space
	Useful Concepts
	Basic search algorithms: Tree Search
	Generalized tree search
	8-Puzzle: States and Nodes
	Slide Number 21
	Problem: Repeated states
	Solution: Graph Search!
	Graph Search vs Tree Search
	Uninformed Search Strategies�
	Uninformed search strategies:
	Search Strategies
	Introduction to space complexity
	Review: Breadth-first search
	Breadth-first search (simplified)
	Properties of breadth-first search
	Exponential Space (and time) Not Good...
	Review: Depth-first search
	Properties of depth-first search
	Depth-first vs Breadth-first
	Search Conundrum
	Depth-limited search: A building block
	Iterative deepening search
	Nodes constructed at each deepening
	Total nodes constructed:
	ID search, Evaluation: Time Complexity
	ID search, Evaluation
	Summary of algorithms
	Next Up: Informed Search
	Informed Search

