
CIS 421/521:
ARTIFICIAL INTELLIGENCE

Informed  
Search



Review: Search problem
definition
States: a set S
An initial state siS
Actions: a set A

 s Actions(s) = the set of actions that can be executed in s, that are applicable in
s.

Transition Model:  s aActions(s) Result(s, a) 
sr sr is called a successor of s
{si } Successors(si )* = state space

Path cost (Performance Measure): Must be additive
e.g. sum of distances, number of actions executed, …
c(x,a,y) is the step cost, assumed ≥ 0

(where action a goes from state x to state y) 
Goal test: Goal(s)

Can be implicit, e.g. checkmate(s) 
s is a goal state if Goal(s) is true



Review: Useful
Concepts
o State space: the set of all states reachable from the initial state by any sequence of 

actions
 When several operators can apply to each state, this gets large very quickly

 Might be a proper subset of the set of configurations

o Path: a sequence of actions leading from one state sj to another state sk

o Frontier: those states that are available for expanding (for applying legal actions to)
o Solution: a path from the initial state si to a state sg that satisfies the goal test
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Lotho  
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Root node = 
start state

Search Tree

Expanded nodes

Frontier Choose leaf node from frontier for expansion 
according to to the search strategy

Determines the 
search process



Review: Search
Strategies

Strategy =order of tree expansion
• Implemented by different queue structures (LIFO, FIFO, priority) 
Dimensions for evaluation

• Completeness- always find the solution?
• Optimality - finds a least cost solution (lowest path cost) first?
• Time complexity - # of nodes generated (worst case)

• Space complexity - # of nodes simultaneously in memory (worst case)

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially )

CIS 521 | 7



Breadth first search

https://youtu.be/x-VTfcmrLEQ



https://youtu.be/NUgMa5coCoE



“Uniform Cost” Search
“In computer science, uniform-cost search (UCS) is a tree search
algorithm used for traversing or searching a weighted tree, tree
structure, or graph.” - Wikipedia



Motivation: Map Navigation
Problems

All our search methods so far 
assume step-cost = 1

This is only true for some problems
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Is it true for the problem 
of map navigation?



g(N): the path cost
function
o Our assumption so far: All moves equal in cost

 Cost =# of nodes in path-1
 g(N) =depth(N) in the search tree

o More general: Assigning a (potentially) unique cost to each step
 N0, N1, N2, N3 =nodes visited on path p from N0 to N3

 C(i,j): Cost of going from Ni to Nj

 If N0 the root of the search tree,
g(N3)=C(0,1)+C(1,2)+C(2,3)



Uniform-cost
search (UCS)
o Extension of BF-search:

 Expand node with lowest path cost

o Implementation:
 frontier =priority queue ordered by g(n)

o Subtle but significant difference from BFS:
 Tests if a node is a goal state when it is selected for expansion, not when it is 

added to the frontier.
 Updates a node on the frontier if a better path to the same state is found.
 So always enqueues a node before checking whether it is a goal.

WHY???



Shape of
Search

o Breadth First Search explores equally in 
all directions. Its frontier is implemented 
as a FIFO queue. This results in smooth 
contours or “plys”.

o Uniform Cost Search lets us prioritize 
which paths to explore. Instead of 
exploring all possible paths equally, it 
favors lower cost paths. Its frontier is a  
priority queue. This results in “cost 
contours”.
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A Better
Idea…
o Node expansion based on an estimate which includes distance to the goal

o General approach of informed search:
 Best-first search: node selected for expansion 

based on an evaluation function f(n)

f(n) includes estimate of distance to goal (new idea!)

o Implementation: Sort frontier queue by this new f(n).
 Special cases: greedy search, and A* search



Simple, useful estimate heuristic: 
straight-line distances

Arad

118



Heuristic (estimate)
functions

o [dictionary]“A rule of thumb, 
simplification, or educated

guess that reduces 
or limits the search for 
solutions in domains
that are difficult and poorly
understood.”

o Heuristic knowledge is useful,
but not necessarily correct.

o Heuristic algorithms use
heuristic knowledge to
solve a problem.
A heuristic function h(n) takes a state n and
returns an estimate of the distance from n
to the goal.Heureka! ---Archimedes



Greedy Best-First Search
First attempt at integrating heuristic knowledge



Review: Best-first
search

Basic idea:

select node for expansion with minimal evaluation function f(n)

• where f(n) is some function that includes estimate heuristic h(n) of the 
remaining distance to goal

Implement using priority queue 

Exactly UCS with f(n) replacing g(n)



Greedy best-first search:
f(n) = h(n)

Expands the node that is estimated to be closest to goal 
Completely ignores g(n): the cost to get to n

In our Romanian map, h(n) = hSLD(n) = straight-line distance from n to Bucharest 
In a grid, the heuristic distance can be calculated using the “Manhattan distance”:



Greedy best-first search

Code from Amit Patel 
of Red Blob Games



BFS v. Greedy Best-
First Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html
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Greedy best-first search example
Frontier queue: 

Arad 366

• Initial State = Arad
• Goal State = Bucharest



Frontier queue: 

Sibiu 253

Timisoara 329

Zerind 374

Greedy best-first search
example



Frontier queue: 

Fagaras 176

Rimnicu Vilcea 
193

Timisoara 329

Arad 366

Zerind 374

Oradea 380

Greedy best-first search
example



Frontier queue: 

Bucharest 0

Rimnicu Vilcea 
193

Sibiu 253

Timisoara 329

Arad 366

Zerind 374

Oradea 380

Goal reached !!

Greedy best-first search
example



Properties of greedy best-
first search

Optimal?

 No!
• Found: Arad Sibiu Fagaras Bucharest (450km)
• Shorter: Arad Sibiu Rimnicu Vilcea  Pitesti Bucharest (418km)

Arad

118



BFS v. Greedy Best-
First Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


A* search
AIMA 3.5



A*
search

Best-known form of best-first search.
Key Idea: avoid expanding paths that are already expensive, but expand most 

promising first.

Simple idea: f(n)=g(n) + h(n)

• g(n) the actual cost (so far) to reach the node
• h(n) estimated cost to get from the node to the goal

• f(n) estimated total cost of path through n to goal
Implementation: Frontier queue as priority queue by increasing f(n) (as expected…)



Key concept: Admissible
heuristics

A heuristic h(n) is admissible if it never overestimates the cost to reach the goal;
i.e. it is optimistic

• Formally:n, n a node:
• h(n) <=   h*(n)

• h(n) >= 0

where h*(n) is the true cost from n

so h(G)=0 for any goal G.
Example: hSLD(n) never overestimates the actual road distance

Theorem: If h(n) is admissible, A *  using Tree Search is optimal



A* is optimal with
admissible heuristic

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


Idea:
Admissibility

Inadmissible 
(pessimistic) heuristics 
break optimality by 
trapping good plans on 
the frontier

Admissible (optimistic)  
heuristics slow down 
bad plans but never 
outweigh true costs

Slide credit:Dan Klein and Pieter Abbeel  
http://ai.berkeley.edu

http://ai.berkeley.edu/


A* search
example

Frontier queue: 

Arad 366



A* search
example

Frontier queue: 

Sibiu 393

Timisoara 447

Zerind 449

We add the three nodes we found to the Frontier queue. 
We sort them according to the g()+h() calculation.
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A* search
example

Frontier queue:

Rimricu Vicea 
413

Fagaras 415

Timisoara 447

Zerind 449

Arad 646

Oradea 671

When we expand Sibiu, we run into Arad again. Note that we’ve 
already expanded this node once; but we still add it to the 
Frontier queue again.
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A* search
example

Frontier queue: 

Fagaras 415

Pitesti 417

Timisoara 447

Zerind 449

Craiova 526

Sibiu 553

Arad 646

Oradea 671

We expand Rimricu Vicea.
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A* search
example

Frontier queue:

Pitesti 417

Timisoara 447

Zerind 449

Bucharest 450

Craiova 526

Sibiu 553

Sibiu 591

Arad 646

Oradea 671

When we expand Fagaras, we find Bucharest, but we’re not 
done. The algorithm doesn’t end until we “expand” the goal 
node – it has to be at the top of the Frontier queue.
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A* search
example

Frontier queue: 

Bucharest 418

Timisoara 447

Zerind 449

Bucharest 450

Craiova 526

Sibiu 553

Sibiu 591
Rimricu Vicea 
607

Craiova 615

Arad 646

Oradea 671
Note that we just found a better value for Bucharest!
Now we expand this better value for Bucharest since it’s at the top of the 
queue.

We’re done and we know the value found is optimal!



Heuristic
functions

For the 8-puzzle
• Avg. solution cost is about 22 

steps

• (branching factor ≤ 3)

• (branching factor ≤ 3)

• A good heuristic function can 

reduce the search process



Example Admissible heuristics

For the 8-puzzle:
hoop(n) =number of out of place tiles
hmd(n) =total Manhattan distance (i.e., #  

of moves from desired location of 
each tile)

hoop(S) =8
hmd(S) =3+1+2+2+2+3+3+2 =18



Relaxed
problems

A problem with fewer restrictions on the actions than the original is called a relaxed 

problem

The cost of an optimal solution to a relaxed problem is an admissible heuristic for the 

original problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then hoop(n)

gives the shortest solution
If the rules are relaxed so that a tile can move to any adjacent square, then hmd(n)

gives the shortest solution



Defining
Heuristics: h(n)

Cost of an exact solution to a relaxed problem (fewer restrictions on operator) 
Constraints on Full Problem:

A tile can move from square A to square B if A is adjacent to B and B is blank.
• Constraints on relaxed problems:

• A tile can move from square A to square B if A is adjacent to B. (hmd)
• A tile can move from square A to square B if B is blank.
• A tile can move from square A to square B. (hoop)



Dominance: A metric on better
heuristics

If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1

So h2 is optimistic, but more accurate than h1

• h2 is therefore better for search
• Notice: hmd dominates hoop

Typical search costs (average number of nodes expanded):
d=12 Iterative Deepening Search =3,644,035 nodes  

A* (hoop) =227 nodes, A* (hmd)=73 nodes

d=24 IDS =too many nodes
A*(hoop) =39,135 nodes, A*(hmd) =1,641 nodes



The best and worst
admissible heuristics

h*(n) - the (unachievable) Oracle heuristic

• h*(n) =the true distance from the n to goal

hwe’re here already(n)= hteleportation(n)=0

Admissible: both yes!!!

h*(n) dominates all other heuristics

hteleportation(n) is dominated by all heuristics



A* search is 
Optimal
AIMA 3.5



Key: Admissibility

Inadmissible (pessimistic) heuristics 
break optimality by pushing good 
plans too far back on the frontier, 
which means they may never get 
expanded.

Admissible (optimistic) heuristics 
slow down bad plans but never 
outweigh true costs. That means  
that the true best plan will always 
be expanded.

Slide credit:Dan Klein and Pieter Abbeel  
http://ai.berkeley.edu

http://ai.berkeley.edu/


Admissible
Heuristics

A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

Is Manhattan Distance admissible?

Coming up with admissible heuristics is most of what’s involved in using A* in 
practice.



Optimality of A* Tree
Search

Assume:

A is an optimal goal node
B is a suboptimal goal node 

h is admissible

Claim:

A will exit the frontier before B

Slide credit: Dan Klein and Pieter Abbeel 
http://ai.berkeley.edu

…

http://ai.berkeley.edu/


Optimality of A* Tree
Search

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too (maybe A!) 

Claim: n will be expanded before B

• f(n) is less or equal to f(A)

Definition of f-cost 
Admissibility of h 
h = 0 at a goal

…

Slide credit: Dan Klein and Pieter Abbeel 
http://ai.berkeley.edu

http://ai.berkeley.edu/


Optimality of A* Tree
Search

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too (maybe A!) 

Claim: n will be expanded before B

• f(n) is less or equal to f(A)

• f(A) is less than f(B)

Slide credit: Dan Klein and Pieter Abbeel 
http://ai.berkeley.edu

B is suboptimal 
h = 0 at a goal

…

http://ai.berkeley.edu/
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Proof:

o Imagine B is on the frontier

o Some ancestor n of A is on the frontier, too (maybe A!)
o Claim: n will be expanded before B 

f(n) is less or equal to f(A)

f(A) is less than f(B)

n expands before B

o All ancestors of A expand before B

o A expands before B

o A* search is optimal

Optimality of A* Tree Search

Slide credit: Dan Klein and Pieter Abbeel 
http://ai.berkeley.edu

…

http://ai.berkeley.edu/


Properties of A*

Slide credit: Dan Klein and Pieter Abbeel 
http://ai.berkeley.edu

http://ai.berkeley.edu/


Properties
of A*

… b … b

Uniform-Cost A*

Slide credit: Dan Klein and Pieter Abbeel 
http://ai.berkeley.edu

http://ai.berkeley.edu/


UCS vs A*
Contours

Uniform-cost expands equally in all “directions”

Start Goal

A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Start Goal

Slide credit: Dan Klein and Pieter Abbeel 
http://ai.berkeley.edu

http://ai.berkeley.edu/


A* Applications
Pathing / routing problems (A* is in your GPS!) 
Video games
Robot motion planning 
Resource planning problems
…



Supplemental
Reading

I recommend this A* tutorial by Amit Patel  
of Red Blob Games

https://www.redblobgames.com/path 
finding/a-star/introduction.html

http://www.redblobgames.com/path


Pathfinding in
Games

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


Pathfinding in
Games

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


Pathfinding in
Games

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


Breadth First
Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


BFS in 10 lines of
Python

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


Finding the
shortest path

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


Finding the
shortest path

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html


Finding the shortest path
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