
CIS 421/521:
ARTIFICIAL INTELLIGENCE

Informed
Search

Review: Search problem
definition
States: a set S
An initial state siS
Actions: a set A

 s Actions(s) = the set of actions that can be executed in s, that are applicable in
s.

Transition Model:  s aActions(s) Result(s, a) 
sr sr is called a successor of s
{si } Successors(si)* = state space

Path cost (Performance Measure): Must be additive
e.g. sum of distances, number of actions executed, …
c(x,a,y) is the step cost, assumed ≥ 0

(where action a goes from state x to state y)
Goal test: Goal(s)

Can be implicit, e.g. checkmate(s)
s is a goal state if Goal(s) is true

Review: Useful
Concepts
o State space: the set of all states reachable from the initial state by any sequence of

actions
 When several operators can apply to each state, this gets large very quickly

 Might be a proper subset of the set of configurations

o Path: a sequence of actions leading from one state sj to another state sk

o Frontier: those states that are available for expanding (for applying legal actions to)
o Solution: a path from the initial state si to a state sg that satisfies the goal test

151

140

118

111

120

97

146

138

101

211

85
98

87

92

142

86

Onderon
71

Coruscant

75
Alderaan

Tatooine Lotho Minor

70
Mandalore

75

Dagobah

Starkiller Base
99

80

Ryloth

Endor

Kessel

Naboo

Zygerria

90

Geonosis

Polis Massa

Iridonia

Fondor

Hoth
Bespin

Vandor-1

Alderaan

Starkiller Base Coruscant

Alderaan Onderon Endor Ryloth Alderaan Alderaan Starkiller
Base

Tatooine

Lotho
Minor

Root node =
start state

Search Tree

Expanded nodes

Frontier Choose leaf node from frontier for expansion
according to to the search strategy

Determines the
search process

Review: Search
Strategies

Strategy =order of tree expansion
• Implemented by different queue structures (LIFO, FIFO, priority)
Dimensions for evaluation

• Completeness- always find the solution?
• Optimality - finds a least cost solution (lowest path cost) first?
• Time complexity - # of nodes generated (worst case)

• Space complexity - # of nodes simultaneously in memory (worst case)

Time/space complexity variables
• b, maximum branching factor of search tree
• d, depth of the shallowest goal node
• m, maximum length of any path in the state space (potentially )

CIS 521 | 7

Breadth first search

https://youtu.be/x-VTfcmrLEQ

https://youtu.be/NUgMa5coCoE

“Uniform Cost” Search
“In computer science, uniform-cost search (UCS) is a tree search
algorithm used for traversing or searching a weighted tree, tree
structure, or graph.” - Wikipedia

Motivation: Map Navigation
Problems

All our search methods so far
assume step-cost = 1

This is only true for some problems

71

151

140

118

111

120

97

146

138

101

211

85
98

87

92

142

86

Onderon

Coruscant

75

Alderaan

Tatooine Lotho Minor

70
Mandalore

75

Dagobah

Starkiller Base
99

80

Ryloth

Endor

Kessel

Naboo

Zygerria

90

Geonosis

Polis Massa

Iridonia

Fondor

Hoth
Bespin

Vandor-1

Is it true for the problem
of map navigation?

g(N): the path cost
function
o Our assumption so far: All moves equal in cost

 Cost =# of nodes in path-1
 g(N) =depth(N) in the search tree

o More general: Assigning a (potentially) unique cost to each step
 N0, N1, N2, N3 =nodes visited on path p from N0 to N3

 C(i,j): Cost of going from Ni to Nj

 If N0 the root of the search tree,
g(N3)=C(0,1)+C(1,2)+C(2,3)

Uniform-cost
search (UCS)
o Extension of BF-search:

 Expand node with lowest path cost

o Implementation:
 frontier =priority queue ordered by g(n)

o Subtle but significant difference from BFS:
 Tests if a node is a goal state when it is selected for expansion, not when it is

added to the frontier.
 Updates a node on the frontier if a better path to the same state is found.
 So always enqueues a node before checking whether it is a goal.

WHY???

Shape of
Search

o Breadth First Search explores equally in
all directions. Its frontier is implemented
as a FIFO queue. This results in smooth
contours or “plys”.

o Uniform Cost Search lets us prioritize
which paths to explore. Instead of
exploring all possible paths equally, it
favors lower cost paths. Its frontier is a
priority queue. This results in “cost
contours”.

g(n)<300

g(n)<200

g(n)<100

Coruscant
71

118

111

87

Tatooine

Lotho Minor

70
Mandalore

Polis Massa

211

Geonosis

Bespin

Endor

101

90

98

142

Vandor-1

97

138

Naboo

86

Fondor

Hoth
146

Zygerria

Starkiller Base
99

80

Ryloth

92

Iridonia

120
75

Dagobah

151

140

Onderon

75
Alderaan

Uniform Cost Search

85

WRONG
WAY!!!!

A Better
Idea…
o Node expansion based on an estimate which includes distance to the goal

o General approach of informed search:
 Best-first search: node selected for expansion

based on an evaluation function f(n)

f(n) includes estimate of distance to goal (new idea!)

o Implementation: Sort frontier queue by this new f(n).
 Special cases: greedy search, and A* search

Simple, useful estimate heuristic:
straight-line distances

Arad

118

Heuristic (estimate)
functions

o [dictionary]“A rule of thumb,
simplification, or educated

guess that reduces
or limits the search for
solutions in domains
that are difficult and poorly
understood.”

o Heuristic knowledge is useful,
but not necessarily correct.

o Heuristic algorithms use
heuristic knowledge to
solve a problem.
A heuristic function h(n) takes a state n and
returns an estimate of the distance from n
to the goal.Heureka! ---Archimedes

Greedy Best-First Search
First attempt at integrating heuristic knowledge

Review: Best-first
search

Basic idea:

select node for expansion with minimal evaluation function f(n)

• where f(n) is some function that includes estimate heuristic h(n) of the
remaining distance to goal

Implement using priority queue

Exactly UCS with f(n) replacing g(n)

Greedy best-first search:
f(n) = h(n)

Expands the node that is estimated to be closest to goal
Completely ignores g(n): the cost to get to n

In our Romanian map, h(n) = hSLD(n) = straight-line distance from n to Bucharest
In a grid, the heuristic distance can be calculated using the “Manhattan distance”:

Greedy best-first search

Code from Amit Patel
of Red Blob Games

BFS v. Greedy Best-
First Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

CIS 550 | Property of Penn Engineering | 26

Greedy best-first search example
Frontier queue:

Arad 366

• Initial State = Arad
• Goal State = Bucharest

Frontier queue:

Sibiu 253

Timisoara 329

Zerind 374

Greedy best-first search
example

Frontier queue:

Fagaras 176

Rimnicu Vilcea
193

Timisoara 329

Arad 366

Zerind 374

Oradea 380

Greedy best-first search
example

Frontier queue:

Bucharest 0

Rimnicu Vilcea
193

Sibiu 253

Timisoara 329

Arad 366

Zerind 374

Oradea 380

Goal reached !!

Greedy best-first search
example

Properties of greedy best-
first search

Optimal?

 No!
• Found: Arad Sibiu Fagaras Bucharest (450km)
• Shorter: Arad Sibiu Rimnicu Vilcea  Pitesti Bucharest (418km)

Arad

118

BFS v. Greedy Best-
First Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

A* search
AIMA 3.5

A*
search

Best-known form of best-first search.
Key Idea: avoid expanding paths that are already expensive, but expand most

promising first.

Simple idea: f(n)=g(n) + h(n)

• g(n) the actual cost (so far) to reach the node
• h(n) estimated cost to get from the node to the goal

• f(n) estimated total cost of path through n to goal
Implementation: Frontier queue as priority queue by increasing f(n) (as expected…)

Key concept: Admissible
heuristics

A heuristic h(n) is admissible if it never overestimates the cost to reach the goal;
i.e. it is optimistic

• Formally:n, n a node:
• h(n) <= h*(n)

• h(n) >= 0

where h*(n) is the true cost from n

so h(G)=0 for any goal G.
Example: hSLD(n) never overestimates the actual road distance

Theorem: If h(n) is admissible, A * using Tree Search is optimal

A* is optimal with
admissible heuristic

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Idea:
Admissibility

Inadmissible
(pessimistic) heuristics
break optimality by
trapping good plans on
the frontier

Admissible (optimistic)
heuristics slow down
bad plans but never
outweigh true costs

Slide credit:Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

http://ai.berkeley.edu/

A* search
example

Frontier queue:

Arad 366

A* search
example

Frontier queue:

Sibiu 393

Timisoara 447

Zerind 449

We add the three nodes we found to the Frontier queue.
We sort them according to the g()+h() calculation.

CIS 550 | Property of Penn Engineering | 41

A* search
example

Frontier queue:

Rimricu Vicea
413

Fagaras 415

Timisoara 447

Zerind 449

Arad 646

Oradea 671

When we expand Sibiu, we run into Arad again. Note that we’ve
already expanded this node once; but we still add it to the
Frontier queue again.

CIS 550 | Property of Penn Engineering | 42

A* search
example

Frontier queue:

Fagaras 415

Pitesti 417

Timisoara 447

Zerind 449

Craiova 526

Sibiu 553

Arad 646

Oradea 671

We expand Rimricu Vicea.

CIS 550 | Property of Penn Engineering | 43

A* search
example

Frontier queue:

Pitesti 417

Timisoara 447

Zerind 449

Bucharest 450

Craiova 526

Sibiu 553

Sibiu 591

Arad 646

Oradea 671

When we expand Fagaras, we find Bucharest, but we’re not
done. The algorithm doesn’t end until we “expand” the goal
node – it has to be at the top of the Frontier queue.

CIS 550 | Property of Penn Engineering | 44

A* search
example

Frontier queue:

Bucharest 418

Timisoara 447

Zerind 449

Bucharest 450

Craiova 526

Sibiu 553

Sibiu 591
Rimricu Vicea
607

Craiova 615

Arad 646

Oradea 671
Note that we just found a better value for Bucharest!
Now we expand this better value for Bucharest since it’s at the top of the
queue.

We’re done and we know the value found is optimal!

Heuristic
functions

For the 8-puzzle
• Avg. solution cost is about 22

steps

• (branching factor ≤ 3)

• (branching factor ≤ 3)

• A good heuristic function can

reduce the search process

Example Admissible heuristics

For the 8-puzzle:
hoop(n) =number of out of place tiles
hmd(n) =total Manhattan distance (i.e., #

of moves from desired location of
each tile)

hoop(S) =8
hmd(S) =3+1+2+2+2+3+3+2 =18

Relaxed
problems

A problem with fewer restrictions on the actions than the original is called a relaxed

problem

The cost of an optimal solution to a relaxed problem is an admissible heuristic for the

original problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then hoop(n)

gives the shortest solution
If the rules are relaxed so that a tile can move to any adjacent square, then hmd(n)

gives the shortest solution

Defining
Heuristics: h(n)

Cost of an exact solution to a relaxed problem (fewer restrictions on operator)
Constraints on Full Problem:

A tile can move from square A to square B if A is adjacent to B and B is blank.
• Constraints on relaxed problems:

• A tile can move from square A to square B if A is adjacent to B. (hmd)
• A tile can move from square A to square B if B is blank.
• A tile can move from square A to square B. (hoop)

Dominance: A metric on better
heuristics

If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1

So h2 is optimistic, but more accurate than h1

• h2 is therefore better for search
• Notice: hmd dominates hoop

Typical search costs (average number of nodes expanded):
d=12 Iterative Deepening Search =3,644,035 nodes

A* (hoop) =227 nodes, A* (hmd)=73 nodes

d=24 IDS =too many nodes
A*(hoop) =39,135 nodes, A*(hmd) =1,641 nodes

The best and worst
admissible heuristics

h*(n) - the (unachievable) Oracle heuristic

• h*(n) =the true distance from the n to goal

hwe’re here already(n)= hteleportation(n)=0

Admissible: both yes!!!

h*(n) dominates all other heuristics

hteleportation(n) is dominated by all heuristics

A* search is
Optimal
AIMA 3.5

Key: Admissibility

Inadmissible (pessimistic) heuristics
break optimality by pushing good
plans too far back on the frontier,
which means they may never get
expanded.

Admissible (optimistic) heuristics
slow down bad plans but never
outweigh true costs. That means
that the true best plan will always
be expanded.

Slide credit:Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

http://ai.berkeley.edu/

Admissible
Heuristics

A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

Is Manhattan Distance admissible?

Coming up with admissible heuristics is most of what’s involved in using A* in
practice.

Optimality of A* Tree
Search

Assume:

A is an optimal goal node
B is a suboptimal goal node

h is admissible

Claim:

A will exit the frontier before B

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

…

http://ai.berkeley.edu/

Optimality of A* Tree
Search

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too (maybe A!)

Claim: n will be expanded before B

• f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h
h = 0 at a goal

…

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

http://ai.berkeley.edu/

Optimality of A* Tree
Search

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too (maybe A!)

Claim: n will be expanded before B

• f(n) is less or equal to f(A)

• f(A) is less than f(B)

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

B is suboptimal
h = 0 at a goal

…

http://ai.berkeley.edu/

CIS 550 | Property of Penn Engineering | 58

Proof:

o Imagine B is on the frontier

o Some ancestor n of A is on the frontier, too (maybe A!)
o Claim: n will be expanded before B

f(n) is less or equal to f(A)

f(A) is less than f(B)

n expands before B

o All ancestors of A expand before B

o A expands before B

o A* search is optimal

Optimality of A* Tree Search

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

…

http://ai.berkeley.edu/

Properties of A*

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

http://ai.berkeley.edu/

Properties
of A*

… b … b

Uniform-Cost A*

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

http://ai.berkeley.edu/

UCS vs A*
Contours

Uniform-cost expands equally in all “directions”

Start Goal

A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Start Goal

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

http://ai.berkeley.edu/

A* Applications
Pathing / routing problems (A* is in your GPS!)
Video games
Robot motion planning
Resource planning problems
…

Supplemental
Reading

I recommend this A* tutorial by Amit Patel
of Red Blob Games

https://www.redblobgames.com/path
finding/a-star/introduction.html

http://www.redblobgames.com/path

Pathfinding in
Games

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Pathfinding in
Games

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Pathfinding in
Games

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Breadth First
Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

BFS in 10 lines of
Python

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Finding the
shortest path

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Finding the
shortest path

https://www.redblobgames.com/pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Finding the shortest path

	Slide Number 1
	Review: Search problem definition
	Review: Useful Concepts
	Onderon
	Root node = start state
	Review: Search Strategies
	Slide Number 7
	Slide Number 8
	“Uniform Cost” Search
“In computer science, uniform-cost search (UCS) is a tree search algorithm used for traversing or searching a weighted tree, tree structure, or graph.” - Wikipedia
	Motivation: Map Navigation Problems
	g(N):	the path cost function
	Uniform-cost search (UCS)
	Shape of Search
	Uniform Cost Search
	A Better Idea…
	Simple, useful estimate heuristic: straight-line distances
	Heuristic (estimate) functions
	Slide Number 18
	Review: Best-first search
	Greedy best-first search: f(n) = h(n)
	Greedy best-first search
	BFS v. Greedy Best-First Search
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Properties of greedy best-first search
	BFS v. Greedy Best-First Search
	Slide Number 29
	A* search
	Key concept: Admissible heuristics
	A* is optimal with admissible heuristic
	Idea: Admissibility
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	Heuristic functions
	Example Admissible heuristics
	Relaxed problems
	Defining Heuristics: h(n)
	Dominance: A metric on better heuristics
	The best and worst admissible heuristics
	Slide Number 46
	Key: Admissibility
	Admissible Heuristics
	Optimality of A* Tree Search
	Optimality of A* Tree Search
	Optimality of A* Tree Search
	Optimality of A* Tree Search
	Properties of A*
	Properties of A*
	UCS vs A* Contours
	A* Applications
	Supplemental Reading
	Pathfinding in Games
	Pathfinding in Games
	Pathfinding in Games
	Breadth First Search
	BFS in 10 lines of Python
	Finding the shortest path
	Finding the shortest path
	Finding the shortest path

