Y
LTI R

LVANIA

Informed
.

.
UNIVERSITY of PENNS

Penn

ARTIFICIAL INTELLIGENCE
Eng

CIS 421/521

Review: Search problem
definition

;asets
An S,‘DS
ca el A
[7 s Actions(s) = the set of actions that can be executed in s, that are in
S.
: [J s [J alJActions(s) Result(s, a) /7
S, S, is called a successor of s
{s; }[7 Successors(s;)*
Performance Measure): Must be additive
e.g. sum of distances, number of actions executed, ...
c(x,a,y) is the step cost, assumed 20
(where action a goes from state x to state y)
Goal(s)
Can be implicit, e.g. checkmate(s)
s is a goal state if Goal(s) is true

@ Penn Engineering

Review: Useful
Concepts

o : the set of all states reachable from the initial state by any sequence of
actions

0 : a sequence of actions leading from one state s; to another state s,

o those states that are available for (for applying legal actions to)

o : a path from the initial state s; to a state s, that satisfies the goal test

@ Penn Engineering

L TR N R S R, L R
p Alderaan & ¢ AR

: o i z v S Tl . 5 e N - .
s oo e SRl N - o ‘ e - Sy i -
1 “ B s 4 i o - g ” e - - 3 ‘ 5 = B X : 3
- :

_+ " Dagobah|

Search Tree Root node =
start state

Expanded nodes

Tatooine

Alderaan Onderon Endor Ryloth

Frontier Choose leaf node from frontier for expansion
according to to the search strategy

Determines the
search process

Review: Search
Strategies

=order of tree expansion
« Implemented by different queue structures (LIFO, FIFO, priority)

Dimensions for evaluation

. always find the solution?

. - finds a least cost solution (lowest path cost) first?
. - # of nodes generated

. - # of nodes simultaneously in memory

Time/space complexity variables
* b, of search tree
* d, of the shallowest goal node
« m, maximum length of any path in the state space (potentially)

‘& Penn Engineering CIs521 | 7

Animation of Graph BFS algorithm
set to music flight of bumble bee’

Animation of Graph DFS algorithm
Depth First Search of Graph
set to music 'flight of bumble bee'

“Uniform Cost” Search

“In computer science, uniform-cost search (UCS) is a tree search
algorithm used for traversing or searching a weighted tree, tree
structure, or graph.” - Wikipedia

Penn Engineering

Motivation: Map Navigation
Problems

All our search methods so far
assume step-cost = 1

This is only true for some problems

Is it true for the problem
of map navigation?

@ Penn Engineering

g(N): the path cost
function

o Our assumption so far: All moves equal in cost

Cost =# of nodes in path-1
g(N) =depth(N) in the search tree

o More general: Assigning a (potentially) unique cost to each step
No, N, N, N5 =nodes visited on path p from Ny to N;

C(i,j): Cost of going from N;to N;
If Ny the root of the search tree,
g(N3)=C(0,1)+C(1,2)+C(2,3)

@ Penn Engineering

Uniform-cost
search (UCS)

o Extension of BF-search:

Expand node with lowest path cost
o Implementation:

frontier =priority queue ordered by g(n)
o Subtle but significant difference from BFS:

Tests if a node is a goal state when it is selected for expansion, not when it is
added to the frontier.

Updates a node on the frontier if a better path to the same state is found.
So always enqueues a node before checking whether it is a goal.

WHY???

@ Penn Engineering

Shape of
Search

o Breadth First Search explores equally in
all directions. Its frontier is implemented
as a FIFO queue. This results in smooth
contours or “plys”.

o Uniform Cost Search lets us prioritize

which paths to explore. Instead of
exploring all possible paths equally, it
favors lower cost paths. Its frontier is a
priority queue. This results in “cost
contours”.

@ Penn Eng]'neering

‘ Onderon
C‘Wf Cost Search A

151

Iridonia

Alderaan ‘

Starkiller Base
99

Vandor-1

& Penn Engineering

Zyagerria Fondor

A Better
ldea...

o Node expansion based on o1 estimate which

o General approach of informed search:
: node selected for expansion

based on an
v includes estimate of distance to goal (new idea!)
o Implementation: Sort frontier queue by this new

- Special cases: greedy search, and

@ Penn Engineering

Simple, useful estimate heuristic:

straight-line distances Aeid 366 iy 241

Bucharest 0 Neamt 234
Craiova 160 Oradea 380

=] Oradea Dobreta 242 Pitesti 100

Eforie 161 Rimnicu Vilcea 193

Fagaras 176 Sibiu 253

Giurgiu 77 Timisoara 329

Hirsova 151 Urziceni 80

_ Iasi 226 Vaslui 199

~ Lugoj 244 Zerind 374

Sibi e
1Dy 99 Fagaras
™ Vaslui
80
o Rimnicu Vilcea
Timisoara —
: % 142
111 Lugio) Pitesti
T
35 98 Hirsova
Mehadia 101 Jrziceni
73 138 - 86
Bucharest
Dobreta 120
Y I:/go
Craiova Eforie
Giurgiu

Heuristic (ESti mate) o [dictionary]“A rule of thumb,

. simplification, or educated
functions guess that reduces
. g or limits the search for
‘ solutions in domains
that are difficult and poorly
understood.”

o Heuristic knowledge is useful,
but not necessarily correct.

o Heuristic algorithms use
euristic in?w(é'gge to
solve a problem.

A heuristic function h(n) takes a state n and
returns an estimate of the distance from n

Heureka! ---Archimedes to the goal.

@ Penn Engineering

Greedy Best-First Search

First attempt at integrating heuristic knowledge

Review: Best-first
search

with minimal
« where is some function that includes
remaining distance to goal

Implement using priority queue

Exactly UCS with replacing

‘& Penn Engineering

of the

Greedy best-first search:
f(n)="h(n)

Expands the node that to be closest to goal

Completely ignores the cost to get to

In our Romanian map, h(n) = hs;p(n) =straight-line distance from » to Bucharest
In a grid, the heuristic distance can be calculated using the "Manhattan distance”:

def heuristic(a, b):

Manhattan distance on a square grid
return abs(a.x - b.x) + abs(a.y - b.y)

%@RmnEq@waﬁg

Greedy best-first search

frontier = PriorityQueue()
frontier.put(start, 0)
came from = {}

came from[start] = None

while not frontier.empty():

current = frontier.get()
if current == goal:
break

for next in graph.neighbors(current):
if next not in came from:
priority = heuristic(goal, next)
frontier.put(next, priority)
came from[next] = current

Code from Amit Patel
of Red Blob Games

F!x; o .
& Penn Englneel ing

BFS v. Greedy Best-
First Search

Breadth First Search Greedy Best-First Search

® ®

https://www.redblobgames.com/pathfinding/a-star/introduction.html

@ Penn Engineering

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Greedy best-first search example

Frontier queue:
Arad 366
386
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
e Initial State = Arad g“l')io‘z é6g giiadt?a igg
obre 4 esti
e Goal State = Bucharest Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

@z\s Penn Engineering

Greedy best-first search
example

Frontier queue:

-
_____——'__-__'_ H'\ B ____——_____
_——'__‘__-__'_____ EH'\-\. _________ ___——_
253 324 ar4

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

@ Penn Engineering

Greedy best-first search
example

Frontier queue:

Fagaras 176

Rimnicu Vilcea {:E":;)
193 e N
T . T
<Sbu >
Arad 366 - / N = o

Oradea 380

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

@ Penn Engineering

Greedy best-first search
example

Frontier queue:

Bucharest O

Rimnicu Vilcea CE"':;}_
193 e
e S TTm—
Sibiu 253 s

_#__/ \H & _ a24 ar4
Arad 366 ? = > @

3E6 380
/ “,

Oradea 380 CEbin P @

= ’ Arad 366 Mehadia 241

Bucharest 0 Neamt 234

Craiova 160 Oradea 380

GOaI r eaCh ed ', ', Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193

Fagaras 176 Sibiu 253

Giurgiu 77 Timisoara 329

Hirsova 151 Urziceni 80

Iasi 226 Vaslui 199

Lugoj 244 Zerind 374

@ Penn Engineering

roperties of greedy best-
iIrst searc

- Nol!
 Found:
* Shorter:

Fagaras

] Vaslui

Rimnicu Vilcea

Timisoara

142

111 Pitesti

70

Hirsova

101

85
S
. Bucharest
0

9

Mehadia Urziceni

75

Dobreta [

— Craiova

] Giurgiu

@ Penn Eng]'neering

BFS v. Greedy Best-
First Search

Breadth First Search Greedy Best-First Search

® ®

https://www.redblobgames.com/pathfinding/a-star/introduction.html

‘& Penn Engineering

http://www.redblobgames.com/pathfinding/a-star/introduction.html

A* search

AIMA 3.5

A*
search

Best-known form of best-first search.
Key Idea: avoid expanding paths that are already expensive, but expand most

promising first.

Simple idea:.
. the actual cost (so far) to the node
. estimated cost to
. estimated of path through n to goal

Implementation: Frontier queue as priority queue by increasing

@ Penn Engineering

Key concept: Admissible
heuristics

A heuristic is admissible if it the cost to reach the goal,;
l.e.itis
 Formally://n, n a node:

. where h*(n) is the true cost from n
. SO h(G)=0 for any goal G.

Example: never overestimates the actual road distance
: If is , A" using Tree Search is

@ Penn Eng]'neering

A* is optimal with
admissible heuristic

Dijkstra’s reedy Best-First A* Search
A2 18N 141 B 150 S8 17 BN 194 R204 R210 B2 a3 8 7 6 5 4 3 2 24 24 24 24 24 24 24
11 12 13 14 15 16 17 18 19 20 21 8 i 6 5 4 3 2 1 24 22 22 22 22 22 22 22
10 11 12 13 14 9 8 24 22
g 10 11| 12 1314 [15 16 | 17 [18 || 19| 20 N N 9 8 7 6 5 4 3 2 24 22| R2e F 224 0D | F20N 105 N0 |23
8 S8 B0 BN E 12 | B30 AN S5 16 BT Hi 8 B9 10 9 8 7 6 5 4 3 241 |1 22 | B2 22N N R FA2N S 02 N2 F 22
7 8 G 10N 11 | B2 138 Bld 15 BIaN Fl7d B8 10 | 9 8 7 6 5 4 24 22 22 22 22 22 22 22 22
6 7 8 9 10 11 12 13 14 15 16 17 22 =R 11 10} s 8 7l 5 & 24 22 22 22 22 22 22 22 22
5 6 7 8 9 NE10Y TN 12 B3 Sial Eihd N5 21 14 13 12 11 10 9 8 7 6 220 122 | Raph F 224§ 90 FO9N 20 N90 22
4 5 6 7 8 9 108 [P12 130 14 15 20 GENN15 14) IS 10 9 8 7 22 22 22 22 24 24 24 24 24 24
3 4 5 6 JIe 8 9 10 1112 13 14 19 18 17 16 15 9 8 SSN 00 DOj R
2 3 4 = 6 7 8 68 100 BT F21 B 18 20 19 18 17 9 22 22 22 22
1 2 3 4 5 6 7 8 S ESTON A 2 1 21 208iS 22
* 1 16 * 21
1 2 N [N B D G B N E O TN B 2 R i S 23 24

283N R4 E G G 2 S O B0 T 120 B S AN S5 6

https://www.redblobgames.com/pathfinding/a-star/introduction.html

@ Penn Eng]'neering

http://www.redblobgames.com/pathfinding/a-star/introduction.html

ldea:
Admissibility

=

T ——
| Heuristi-Tron @

Inadmissible Admissible (optimistic)
(pessimistic) heuristics heuristics slow down
break optimality by bad plans but never
trapping good plans on outweigh true costs

the frontier

Slide credit: Dan Klein and Pieter Abbeel

@ Penn Eng]'neering

http://ai.berkeley.edu/

search

A*

example
Frontier queue:
Arad 366

¥
2

.

o0
=
w
()
>

'Penn E

-

Y

A* search

example
Frontier queue:
Sibiu 393
Timisoara 447 N~ T

We add the three nodes we found to the Frontier queue.
We sort them according to the g()+h() calculation.

Penn Engineering

A* search

Frontier queue:
Rimricu Vicea < Aad

'-__-h_;r'} .‘-irr;imsua ‘ﬂ :"Ii:.
Fagaras 415 {“-_7?"'""--; #47=118+329 449754374

Timisoara 447 T G b

G46=280+366 415=239+176 671=291+380 413=220+193
Zerind 449

Arad 646 <

Oradea 671

When we expand Sibiu, we run into Arad again. Note that we've
already expanded this node once; but we still add it to the

Frontier queue again.

@z\s Penn Engineering

A* search
example

Frontier queue:
Fagaras 415 CJ:EB >
Pitesti 417 - T

< _%,‘.’,'H_Jf
Timisoara 447 H7=118:329 HE=TEAT

. ‘m- aas 4 Ol ¥ .mr.u'u‘i
Zerlnd 449 EWJWHEE% 671= 2914-380
Craiova 526 G CP‘?-‘DCE'G‘D
526=366+160 417=317+4100 E53=3004+253

Sibiu 553
Arad 646
Oradea 671

We expand Rimricu Vicea.

@z\s Penn Engineering

A* search

Frontier queue:
Pitesti 417 c;: A;md_j}
D
Zerind 449 . : H7=118+323 449-T5+374
alas Ol rnnr.u [4=5)

Craiova 526 TS @ TS CED

591=338+253 450=450+0 FPE=366+160 417=317+100 553=300+4253
Sibiu 553
Sibiu 591
Arad 646
Oradea 671

When we expand Fagaras, we find Bucharest, but we're not
done. The algorithm doesn’t end until we “expand” the goal
node —it has to be at the top of the Frontier queue.

@z\? Penn Engineering

A* search

Frontier queue:
=P

imisoara {:__ ,‘.’, >

Zerlnd 449 -~ - H7=118+329 449=75+374
Ol (Rimnicw Vic=a

Bucharest 450 EE ’ Eﬂ -
Craiova 526 T @ D @D T
Sibiu 553 581=338+253 450=450+0 B26=366+160 - | 553=300+253

ibiu

- > Eushare=D
Sibiu 591 418=418+0 G15=455+160 GOT=414+193
Arad 646 . I

Note that we just found a better value for Bucharest!

Oradea 671

Now we expand this better value for Bucharest since it’s at the top of the
queue.

We're done and we know the value found is optimal!

@z\s Penn Engineering

Heuristic
functions

For the 8-puzzle . . , ' 4
« Avg. solution cost is about 22 . |
steps T
« (branching factor < 3) 5 6
« (branching factor < 3) e Py o
« A good heuristic function can 8 3 1
reduce the search process e
Start State Goal State

‘& Penn Engineering

Example Admissible heuristics

For the 8-puzzle: ; | ” : 4
hoop(n) =number of out of place tiles | |
hmg(n) =total Manhattan distance (i.e., # |; |

of moves from desired location of 5 6

each tile) Pt

8 Il 3 (|| T

Noop(S) =8 L =l il
ha(S) =3+142424243+3+2 =18 Start State Goal State

@ Penn Eng]'neering

Relaxed
problems

A problem with fewer restrictions on the actions than the original is called a

If the rules of the 8-puzzle are relaxed so that a tile can move , then hgyop(n)
gives the shortest solution

If the rules are relaxed so that a tile can move to then h,4(n)
gives the shortest solution

@ Penn Eng]'neering

Defining
Heuristics: h(n)

Cost of an exact solution to a problem (fewer restrictions on operator)
Constraints on Problem:

A tile can move from square A to square B if and B is blank.
« Constraints on problems:
 Atile can move from square A to square B if . (hima)

 Atile can move from square A to square B if B is blank.

* Atile can move from square A to square B. (hyop)

@ Penn Engineering

Dominance: A metric on better
heuristics

If for all n (both admissible)
« then h, h,

So h, is optimistic, but more accurate than h;
* h,is therefore better for search
- Notice: &,,dominates 4,,,

Typical search costs (average number of nodes expanded):
d=12 Iterative Deepening Search =3,644,035 nodes

A" (hyop) =227 nodes, A" (hng) =73 nodes

d=24 IDS =too many nodes
A*(hoop) =39,135 nodes, A'(hng) =1,641 nodes

@ Penn Engineering

The best and worst
admissible heuristics

h*(n) - the (unachievable) Oracle heuristic

* h*(n) =the true distance from the n to goal

hwe’re here already(n)= hteleportation(n)=0

Admissible: both yes!!!

h*(n) dominates all other heuristics
Rteleportation(N) is dominated by all heuristics

@ Penn Engineering

A* search is
Optimal

AIMA 3.5

Key: Admissibility

Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
break optimality by pushing good slow down bad plans but never
plans too far back on the frontier, outweigh true costs. That means
which means they may never get that the true best plan will always
expanded. be expanded.

Slide credit: Dan Klein and Pieter Abbeel

‘& Penn Engineering

http://ai.berkeley.edu/

Admissible
Heuristics

A heuristic % is admissible (optimistic) if:
0 < h(n) < h*(n)
where h*(n) is the true cost to a nearest goal

7 2 4 1 2
Is Manhattan Distance admissible?
5 6 3 4 5
8 3 1 6 7 8
Start State Goal State

Coming up with admissible heuristics is most of what's involved in using A* in
practice.

@z\s Penn Engineering

Optimality of A* Tree
Search

Assume:

A is an optimal goal node

B is a suboptimal goal node

h is admissible

Claim:

A will exit the frontier before B

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

‘& Penn Engineering

http://ai.berkeley.edu/

Optimality of A* Tree

Search

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too (maybe A!) o

Claim: n will be expanded before B

* f(n)is less or equal to f(A)

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

@ Penn Eng]'neering

A
QB
£(n) = g(n) + h(n) Definition of f-cost
f(n) <g(A) Admissibility of h
g(A) = f(A) h =0 at a goal
/

http://ai.berkeley.edu/

Optimality of A* Tree
Search

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too (maybe A!)

Claim: n will be expanded before B

* f(n)is less or equal to f(A)
* f(A)is less than f(B) —_

g(A) < g(B) Bissuboptimal
f(A) < f(B) h=0atagoal

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

@ Penn Eng]'neering

http://ai.berkeley.edu/

Optimality of A* Tree Search

Proof:

o Imagine B is on the frontier v
o Some ancestor n of A is on the frontier, too (maybe Al) A S
o Claim: n will be expanded before B <

f(n) is less or equal to f(A)

f(A) is less than f(B)

n expands before B
o All ancestors of A expand before B f(n) < f(A) < f(B) J

o A expands before B

o A* searchis optimal

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

@Z\E Penn Engineering

http://ai.berkeley.edu/

X
<
—
@,
n
),
-
-
D
O
@,
S
al

Dan Klein and Pieter Abbeel

//ai.berkeley.edu

Slide credi

http

.

2.0
=
4
=
=

Penn E

[
@

http://ai.berkeley.edu/

Properties
of A*

Uniform-Cost A*

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

Penn Engineering

http://ai.berkeley.edu/

UCSvs A*
Contours

Uniform-cost expands equally in all “directions”

St Goal

A* expands mainly toward the goal, but does hedge its bets to ensure optimality

StarGoaI

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

‘& Penn Engineering

http://ai.berkeley.edu/

A* Applications

Pathing / routing problems (A* is in your GPS!)
Video games

Robot motion planning

Resource planning problems

& Penn Engineering
S S

Introduction to the A* Algorithm

Supplemental
Reading afegeleiicigviwie

Created 26 May 2014, updated Aug 2014, Feb 2016, Jun 2016

In games we often want to find paths from one location to another. We're
Irecommen d th IS A* tuto r|a| by Amit Patel not only trying to find the shortest distance; we also want to take into ac-
Of Red B | 0 b G ames count travel time. Move the blob * (start point) and cross ¢ (end point)

to see the shortest path.

https://www.redblobgames.com/path
finding/a-star/introduction.html

To find this path we can use a graph search algorithm, which works when
the map is represented as a graph. A* is a popular choice for graph search.
Breadth First Search is the simplest of the graph search algorithms, so
let’s start there, and we’ll work our way up to A*.

Penn Engineering

http://www.redblobgames.com/path

Pathfinding in
Games

https://www.redblobgames.com/pathfinding/a-star/introduction.html

@E\? Penn Engineerhlg

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Pathfinding in

https://www.redblobgames.com/pathfinding/a-star/introduction.html

@E\? Penn Engineerhlg

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Pathfinding in

3 1} HEF

ey S 1ei da

FHehE - HE
AT i

+ b | == R KR
C BH HF
- B WHTF
: ssermpasallas

https://www.redblobgames.com/pathfinding/a-star/introduction.html

@:\F Penn Engineerhlg

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Breadth First
Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html

Penn Engineering

http://www.redblobgames.com/pathfinding/a-star/introduction.html

BFSin 10 lines of
Python

frontier = Queue()
frontier.put(startJi')
visited = {}
visited[start] = True

while not frontier.empty():
current = frontier.get()
for next in graph.neighbors(current):
if next not in visited:
frontier.put (next)
visited[next] = True

https://www.redblobgames.com/pathfinding/a-star/introduction.html

Penn Engineering

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Finding the
shortest path

e T 3 any: Mibali
HEF R tn, 70,2 10 418 15418 A8, 1% 19 S W
A4 IDIDADA AR A D Bl
+ b AR A A A A - ¥
A4 A i'_bi**** 4 gy *ﬁ*‘lv
W AL 44 P
> > 3,500 g
e > > 4 44 € EEEEE e e
vV 2o i) e e e 444414 e
8 i A A4 A A4 A
aobe; 4444440 I I I I I Y SIDIDIDIDIDID
9/ e F R R A A A A4 AD
SO R Y P A A4 A
SO R R Y F 4444440

https://www.redblobgames.com/pathfinding/a-star/introduction.html

‘& Penn Engineering

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Finding the
shortest path

frontier = Queue()
frontier.put (start)
came_from = {}
came_from[start] = None

while not frontier.empty():
current = frontier.get()
for next in graph.neighbors(current):
if next not in came_from:
frontier.put (next)
came_from[next] = current

https://www.redblobgames.com/pathfinding/a-star/introduction.html

Penn Engineering

http://www.redblobgames.com/pathfinding/a-star/introduction.html

Finding the shortest path
:::++¢+**vt++*+‘_v:::: v v
g g 8,00, TR AR AR A, AT AT ATR AR 1%, Dol vV
_’44 Y v ¥y vvevyvy 2R AR |
N 28 2% 20 2% 2% 2R vV
A4 4 VY YV VY A vy
A4 4 Y v v ¥ 4 4 **f¢
\/ A 44 ¥
4 ¢ &
vV YV H——+ A4 A4
LAl SR 4444
Vv 44 A4 44
KA N 444
> P>
A4 4 A 444
current = goal & 4 4 4 4 4 4 4
path = [] 4 4 4 A 444
while current != start: *

path.append(current)

current = came_ from|[current]
path.append(start) # optional
path.reverse() # optional

‘& Penn Engineering
S S S

	Slide Number 1
	Review: Search problem definition
	Review: Useful Concepts
	Onderon
	Root node = start state
	Review: Search Strategies
	Slide Number 7
	Slide Number 8
	“Uniform Cost” Search
“In computer science, uniform-cost search (UCS) is a tree search algorithm used for traversing or searching a weighted tree, tree structure, or graph.” - Wikipedia
	Motivation: Map Navigation Problems
	g(N):	the path cost function
	Uniform-cost search (UCS)
	Shape of Search
	Uniform Cost Search
	A Better Idea…
	Simple, useful estimate heuristic: straight-line distances
	Heuristic (estimate) functions
	Slide Number 18
	Review: Best-first search
	Greedy best-first search: f(n) = h(n)
	Greedy best-first search
	BFS v. Greedy Best-First Search
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Properties of greedy best-first search
	BFS v. Greedy Best-First Search
	Slide Number 29
	A* search
	Key concept: Admissible heuristics
	A* is optimal with admissible heuristic
	Idea: Admissibility
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	Heuristic functions
	Example Admissible heuristics
	Relaxed problems
	Defining Heuristics: h(n)
	Dominance: A metric on better heuristics
	The best and worst admissible heuristics
	Slide Number 46
	Key: Admissibility
	Admissible Heuristics
	Optimality of A* Tree Search
	Optimality of A* Tree Search
	Optimality of A* Tree Search
	Optimality of A* Tree Search
	Properties of A*
	Properties of A*
	UCS vs A* Contours
	A* Applications
	Supplemental Reading
	Pathfinding in Games
	Pathfinding in Games
	Pathfinding in Games
	Breadth First Search
	BFS in 10 lines of Python
	Finding the shortest path
	Finding the shortest path
	Finding the shortest path

