
CIS 521:
ARTIFICIAL INTELLIGENCE

Harry Smith

Constraint
Satisfaction
Problems

CIS 550 | Property of Penn Engineering | 2

o Assumptions about the world: a single agent, deterministic actions, fully
observed state, discrete state space

o Planning: sequences of actions
▪ The path to the goal is the important thing
▪ Paths have various costs, depths
▪ Heuristics give problem-specific guidance

o Identification: assignments to variables
▪ The goal itself is important, not the path
▪ All paths at the same depth (for some formulations)
▪ CSPs are specialized for identification problems

What is Search For?

CIS 550 | Property of Penn Engineering | 3

Big idea

o Represent the constraints that solutions must satisfy in a uniform declarative
language

o Find solutions by GENERAL PURPOSE search algorithms with no changes from
problem to problem
▪ No hand-built transition functions
▪ No hand-built heuristics

o Just specify the problem in a formal declarative language, and a general-
purpose algorithm does everything else!

CIS 550 | Property of Penn Engineering | 4

Constraint Satisfaction Problems

A CSP consists of:
▪ Finite set of variables X1, X2, …, Xn

▪ Nonempty domain of possible values
for each variable
D1, D2, … Dn where Di = {v1, …, vk}

▪ Finite set of constraints C1, C2, …, Cm

• Each constraint Ci limits the
values that variables can take,
e.g., X1 ≠ X2 A state is defined as
an assignment of values to some
or all variables.

o A consistent assignment does not violate
the constraints.
o Example problem: Sudoku

CIS 550 | Property of Penn Engineering | 5

Constraints in Sudoku

All different

CIS 550 | Property of Penn Engineering | 6

Constraints in Sudoku All different

CIS 550 | Property of Penn Engineering | 7

Constraints in Sudoku All different

CIS 550 | Property of Penn Engineering | 8

Constraint satisfaction problems

o An assignment is complete when every variable is assigned a value.

o A solution to a CSP is a complete, consistent assignment.

o Solutions to CSPs can be found by a completely general purpose algorithm, given
only the formal specification of the CSP.

o Beyond our scope: CSPs that require a solution that maximizes an objective
function.

CIS 550 | Property of Penn Engineering | 9

Applications

o Map coloring
o Scheduling problems

▪ Job shop scheduling
▪ Scheduling the Hubble Space

Telescope
o Floor planning for VLSI
o Sudoku
o …

CIS 550 | Property of Penn Engineering | 10

Example: Map-coloring

o Variables: WA, NT, Q, NSW, V, SA, T
o Domains: Di = {red,green,blue}
o Constraints: adjacent regions must have different colors

▪ e.g., WA ≠ NT
• So (WA,NT) must be in {(red,green),(red,blue),(green,red), …}

CIS 550 | Property of Penn Engineering | 11

Example: Map-coloring

Solutions: complete and consistent assignments
▪ e.g., WA = red, NT = green,Q = red, NSW = green,

V = red, SA = blue, T = green

CIS 550 | Property of Penn Engineering | 12

Benefits of CSP

o Clean specification of many problems, generic goal, successor function &
heuristics
▪ Just represent problem as a CSP & solve with general package

o CSP “knows” which variables violate a constraint
▪ And hence where to focus the search

o CSPs: Automatically prune off all branches that violate constraints
▪ (State space search could do this only by hand-building constraints into

the successor function)

CIS 550 | Property of Penn Engineering | 13

CSP Representations
o Constraint graph:

▪ nodes are variables
▪ arcs are (binary) constraints

o Standard representation pattern:
▪ variables with values

o Constraint graph simplifies search.
▪ e.g. Tasmania is an independent subproblem.

o This problem: A binary CSP:
▪ each constraint relates two variables

CIS 550 | Property of Penn Engineering | 14

Varieties of CSPs

o Discrete variables
▪ finite domains:

• n variables, domain size d  O(dn) complete assignments
• e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)

▪ infinite domains:
• integers, strings, etc.
• e.g., job scheduling, variables are start/end days for each job
• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

o Continuous variables
▪ e.g., start/end times for Hubble Space Telescope observations
▪ linear constraints solvable in polynomial time by linear programming

CIS 550 | Property of Penn Engineering | 15

Varieties of constraints
o Unary constraints involve a single variable,

▪ e.g., SA ≠ green

o Binary constraints involve pairs of variables,
▪ e.g., SA ≠ WA

o Higher-order constraints involve 3 or more variables
▪ e.g., crypt-arithmetic column constraints

o Preference (soft constraints) e.g. red is better than green can be
represented by a cost for each variable assignment
▪ Constrained optimization problems.

CIS 550 | Property of Penn Engineering | 16

Idea 1: CSP as a search problem

o A CSP can easily be expressed as a search
problem
▪ Initial State: the empty assignment {}.

▪ Successor function: Assign value to
any unassigned variable provided that
there is not a constraint conflict.

▪ Goal test: the current assignment is
complete.

▪ Path cost: a constant cost for every
step.

o Solution is always found at depth
n, for n variables
▪ Hence Depth First Search can be used

CIS 550 | Property of Penn Engineering | 17

Search and branching factor

…

• n variables of domain size d
• Branching factor at the root is n*d
• Branching factor at next level is (n-1)*d
• Tree has n!*dn leaves

CIS 550 | Property of Penn Engineering | 18

Search and branching factor

o The variable assignments are commutative
▪ Eg [step 1: WA = red; step 2: NT = green]

equivalent to [step 1: NT = green; step 2: WA = red]
▪ Therefore, a tree search, not a graph search

o Only need to consider assignments to a single variable at each
node
▪ b = d and there are dn leaves (n variables, domain size d)

CIS 550 | Property of Penn Engineering | 19

Search and Backtracking

o Depth-first search for CSPs with single-variable assignments is called
backtracking search

o The term backtracking search is used for a depth-first search that
chooses values for one variable at a time and backtracks when a
variable has no legal values left to assign.

o Backtracking search is the basic uninformed algorithm for CSPs

How does this backtracking search
differ from our previous formulation

of a DFS?

CIS 550 | Property of Penn Engineering | 20

Backtracking example

CIS 550 | Property of Penn Engineering | 21

Backtracking example

CIS 550 | Property of Penn Engineering | 22

Idea 2: Improving backtracking efficiency

• General-purpose methods & general-purpose heuristics can give huge gains
in speed, on average

• Heuristics:
▪ Q: Which variable should be assigned next?

1. Most constrained variable
2. (if ties:) Most constraining variable

▪ Q: In what order should that variable’s values be tried?
3. Least constraining value

▪ Q: Can we detect inevitable failure early?
4. Forward checking

CIS 550 | Property of Penn Engineering | 23

Heuristic 1: Most constrained variable

o Choose a variable with the
fewest legal values

o a.k.a. minimum remaining values
(MRV) heuristic

3

3

3

3

33
3

3

3

2

3

2
3

2

3
3

1
3

1

2
3

2

CIS 550 | Property of Penn Engineering | 24

Heuristic 2: Most constraining variable

o Tie-breaker among most
constrained variables

o Choose the variable with the
most constraints on remaining
variables

These two heuristics together lead to
immediate solution of our example

problem

CIS 550 | Property of Penn Engineering | 25

Heuristic 3: Least constraining value

o Given a variable, choose the least
constraining value:
▪ the one that rules out the

fewest values in the
remaining variables

Note: demonstrated here independent of the
other heuristics

CIS 550 | Property of Penn Engineering | 26

Heuristic 4: Forward checking
o Idea:

▪ Keep track of remaining legal values for unassigned variables
▪ Terminate search when any unassigned variable has no remaining legal values

(A first step towards Arc Consistency & AC-3)

26

New data
structure

CIS 550 | Property of Penn Engineering | 27

Forward checking
o Idea:

▪ Keep track of remaining legal values for unassigned variables
▪ Terminate search when any unassigned variable has no remaining legal values

27

CIS 550 | Property of Penn Engineering | 28

Forward checking
o Idea:

▪ Keep track of remaining legal values for unassigned variables
▪ Terminate search when any unassigned variable has no remaining legal values

28

CIS 550 | Property of Penn Engineering | 29

Forward checking
o Idea:

▪ Keep track of remaining legal values for unassigned variables
▪ Terminate search when any unassigned variable has no remaining legal values

Terminate! No possible value for SA

29

CIS 550 | Property of Penn Engineering | 30

Example: 4-Queens Problem

30

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Assign value to unassigned variable

1

3
2

4

32 41

CIS 550 | Property of Penn Engineering | 31

1

3
2

4

32 41

Example: 4-Queens Problem

31

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Forward check!

CIS 550 | Property of Penn Engineering | 32

1

3
2

4

32 41

Example: 4-Queens Problem

32

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Assign value to unassigned variable

CIS 550 | Property of Penn Engineering | 33

1

3
2

4

32 41

Example: 4-Queens Problem

33

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2, , }

X2
{ , ,3,4}

Backtrack!!!

Forward check!

CIS 550 | Property of Penn Engineering | 34

1

3
2

4

32 41

Example: 4-Queens Problem

34

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Picking up a little later after
two steps of backtracking….

Assign value to unassigned variable

CIS 550 | Property of Penn Engineering | 35

1

3
2

4

32 41

Example: 4-Queens Problem

35

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Forward check!

CIS 550 | Property of Penn Engineering | 36

1

3
2

4

32 41

Example: 4-Queens Problem

36

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Assign value to unassigned variable

CIS 550 | Property of Penn Engineering | 37

1

3
2

4

32 41

Example: 4-Queens Problem

37

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Forward check!

CIS 550 | Property of Penn Engineering | 38

1

3
2

4

32 41

Example: 4-Queens Problem

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Assign value to unassigned variable

CIS 550 | Property of Penn Engineering | 39

1

3
2

4

32 41

Example: 4-Queens Problem

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Forward check!

CIS 550 | Property of Penn Engineering | 40

1

3
2

4

32 41

Example: 4-Queens Problem

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Assign value to unassigned variable

CIS 550 | Property of Penn Engineering | 41

Towards Constraint propagation
o Forward checking propagates information from assigned to unassigned variables,

but doesn't provide early detection for all failures:

o NT and SA cannot both be blue!
o Constraint propagation goes beyond forward checking & repeatedly enforces

constraints locally

CIS 550 | Property of Penn Engineering | 42

Arc Consistency,
Constraint Propagation & AC-3

CIS 550 | Property of Penn Engineering | 43

Idea 3 (big idea): Inference in CSPs
o CSP solvers combine search and inference

▪ Search
• assigning a value to a variable

▪ Constraint propagation (inference)
• Eliminates possible values for a variable

if the value would violate local consistency
▪ Can do inference first, or intertwine it with search

• You’ll investigate this in the Sudoku homework
o Local consistency

▪ Node consistency: satisfies unary constraints
• This is trivial!

▪ Arc consistency: satisfies binary constraints
• (Xi is arc-consistent w.r.t. Xj if for every value v in Di, there is some

value w in Dj that satisfies the binary constraint on the arc between Xiand Xj)

CIS 550 | Property of Penn Engineering | 44

CSP Representations

o Constraint graph:
▪ nodes are variables
▪ edges are constraints

CIS 550 | Property of Penn Engineering | 45

Edges to Arcs: From Constraint Graph
to Directed Graph
o Given a pair of nodes Xi and Xj

connected by a constraint edge,
we represent this not by a single
undirected edge, but a pair of
directed arcs.
▪ For a connected pair of

nodes Xi and Xj , there are
two arcs that connect them:
(i,j) and (j,i).

Xi Xj

(i,j)

(j,i)

⇒Xi Xj

CIS 550 | Property of Penn Engineering | 46

Arc consistency

o Simplest form of
propagation makes each arc
consistent

o X Y is consistent iff
for every value x of X there is some
allowed y

CIS 550 | Property of Penn Engineering | 47

Arc consistency

o Simplest form of
propagation makes each arc
consistent

o X Y is consistent iff
for every value x of X there is some
allowed y

47

CIS 550 | Property of Penn Engineering | 48

Arc consistency

o Simplest form of propagation
makes each arc consistent

o X Y is consistent iff
for every value x of X there is some
allowed y

o If X loses a value, recheck
neighbors of X

48

CIS 550 | Property of Penn Engineering | 49

Arc consistency
o Simplest form of propagation makes each arc

consistent
o X Y is consistent iff

for every value x of X there is some allowed y

o If X loses a value, we need to recheck neighbors of
X

o Detects failure earlier than forward checking
o Can be run as a preprocessor or after each

assignment

49

CIS 550 | Property of Penn Engineering | 50

Arc Consistency

An arc (i,j) is arc consistent if and only if every value v on Xi is
consistent with some label on Yj.

To make an arc (i,j) arc consistent,
for each value v on Xi ,

if there is no label on Yj consistent with v
then remove v from Xi

o Given d values, checking arc (i,j) takes O(d2) time worst case

50

CIS 550 | Property of Penn Engineering | 51

Example: The Waltz Algorithm
o The Waltz algorithm is for

interpreting line drawings of
solid polyhedra as 3D objects

o An early example of an AI
computation posed as a CSP

 Approach:
 Each intersection is a variable
 Adjacent intersections impose

constraints on each other
 Solutions are physically

realizable 3D interpretations

?

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

CIS 550 | Property of Penn Engineering | 52

Replacing Search:
Constraint Propagation Invented…
Dave Waltz’s insight:

o By iterating over the graph, the arc-consistency constraints
can be propagated along arcs of the graph.

o Search: Use constraints to add labels to find one solution

o Constraint Propagation: Use constraints to eliminate labels to
simultaneously find all solutions

CIS 550 | Property of Penn Engineering | 53

The Waltz/Mackworth Constraint Propagation
Algorithm

1. Assign every node in the constraint graph a set of all possible values
2. Repeat until there is no change in the set of values associated with

any node:
3. For each node i:

4. For each neighboring node j in the picture:
5. Remove any value from i which is not arc

consistent with j.

CIS 550 | Property of Penn Engineering | 54

Inefficiencies: Towards AC-3

1. At each iteration, we only need to examine those Xi where at least one
neighbor of Xi has lost a value in the previous iteration.

2. If Xi loses a value only because of arc inconsistencies with Yj, we don’t
need to check Yj on the next iteration.

3. Removing a value on Xi can only make Yj arc-inconsistent with respect
to Xi itself. Thus, we only need to check that (j,i) is still arc-consistent.

These insights lead a much better algorithm...

CIS 550 | Property of Penn Engineering | 55

Add back arcs to
neighbors whenever a

node had values removed

AC-3
function AC-3(csp) return the CSP, possibly with reduced domains

inputs: csp, a binary csp with variables {X1, X2, …, Xn}
local variables: queue, a queue of arcs initially the arcs in csp
while queue is not empty do

(Xi, Xj) ← queue.pop()
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

for each Xk in NEIGHBORS[Xi] – {Xj} do
add (Xk, Xi) to queue

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value
removed ← false
for each x in DOMAIN[Xi] do

if no value y in DOMAIN[Xj] allows (x,y) to satisfy
the constraints between Xi and Xj

then delete x from DOMAIN[Xi]; removed ← true
return removed

Keep track of what
arcs we need to

process

CIS 550 | Property of Penn Engineering | 56

AC-3: Worst Case Complexity Analysis

o All nodes can be connected to every other node,
▪ so each of n nodes must be compared against n-1 other nodes,
▪ so total # of arcs is 2*n*(n-1), i.e. O(n2)

o If there are d values, checking arc (i,j) takes O(d2) time
o Each arc (i,j) can only be inserted into the queue d times
o Worst case complexity: O(n2d3)

(For planar constraint graphs, the number of arcs can only be linear in N
and the time complexity is only O(nd3))

	Slide Number 1
	Slide Number 2
	Big idea
	Constraint Satisfaction Problems
	Constraints in Sudoku
	Constraints in Sudoku
	Constraints in Sudoku
	Constraint satisfaction problems
	Applications
	Example: Map-coloring
	Example: Map-coloring
	Benefits of CSP
	CSP Representations
	Varieties of CSPs
	Varieties of constraints
	Idea 1: CSP as a search problem
	Search and branching factor
	Search and branching factor
	Search and Backtracking
	Backtracking example
	Backtracking example
	Idea 2: Improving backtracking efficiency
	Heuristic 1: Most constrained variable
	Heuristic 2: Most constraining variable
	Heuristic 3: Least constraining value
	Heuristic 4: Forward checking
	Forward checking
	Forward checking
	Forward checking
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Towards Constraint propagation
	Slide Number 42
	Idea 3 (big idea): Inference in CSPs
	CSP Representations
	Edges to Arcs: From Constraint Graph to Directed Graph
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency
	Arc Consistency
	Example: The Waltz Algorithm
	Replacing Search:�Constraint Propagation Invented…
	The Waltz/Mackworth Constraint Propagation Algorithm
	Inefficiencies: Towards AC-3
	AC-3
	AC-3: Worst Case Complexity Analysis

