CIS 521: ARTIFICIAL INTELLIGENCE

Constraint Satisfaction Problems

Harry Smith

What is Search For?

 Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

• Planning: sequences of actions

- The path to the goal is the important thing
- Paths have various costs, depths
- Heuristics give problem-specific guidance

\circ Identification: assignments to variables

- The goal itself is important, not the path
- All paths at the same depth (for some formulations)
- CSPs are specialized for identification problems

Big idea

- Represent the *constraints* that solutions must satisfy in a uniform *declarative* language
- Find solutions by *GENERAL PURPOSE* search algorithms with no changes from problem to problem
 - No hand-built transition functions
 - No hand-built heuristics
- Just specify the problem in a formal declarative language, and a generalpurpose algorithm does everything else!

Constraint Satisfaction Problems

A CSP consists of:

- Finite set of variables $X_1, X_2, ..., X_n$
- Nonempty **domain** of possible values for each variable $D_1, D_2, \dots D_n$ where $D_i = \{v_1, \dots, v_k\}$
- Finite set of constraints $C_1, C_2, ..., C_m$
 - Each constraint C_i limits the values that variables can take, e.g., $X_1 \neq X_2$ A state is defined as an assignment of values to some or all variables.

\odot A $\ensuremath{\textit{consistent}}$ assignment does not violate the constraints.

o Example problem: Sudoku

Constraints in Sudoku

👼 Penn Engineering

Constraints in Sudoku All different

8			4	7	3			
	2	6	8	5	1		9	
		5				8		
	1	3			8	4		
6		7	3		2	9		
	5			9	7	6		8
	6	2	7	3		5		
	3		2			7		6
4			6				2	

🐯 Penn Engineering

Constraints in Sudoku All different

👼 Penn Engineering

Constraint satisfaction problems

- An assignment is *complete* when every variable is assigned a value.
- A *solution* to a CSP is a *complete, consistent* assignment.
- Solutions to CSPs can be found by a completely *general purpose* algorithm, given only the formal specification of the CSP.
- Beyond our scope: CSPs that require a solution that maximizes an *objective function*.

Applications

- Map coloring
- Scheduling problems
 - Job shop scheduling
 - Scheduling the Hubble Space Telescope
- Floor planning for VLSI
- \circ Sudoku
- 0 ...

Example: Map-coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- **Domains:** $D_i = \{red, green, blue\}$
- o Constraints: adjacent regions must have different colors
 - e.g., WA ≠ NT
 - So (WA,NT) must be in {(red,green),(red,blue),(green,red), ...}

Example: Map-coloring

Solutions: complete and consistent assignments

😽 Penn Engineering

e.g., WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

Renn Engineering

Benefits of CSP

- Clean specification of many problems, generic goal, successor function & heuristics
 - Just represent problem as a CSP & solve with general package
- CSP "knows" which variables violate a constraint
 - And hence where to focus the search
- CSPs: Automatically prune off all branches that violate constraints
 - (State space search could do this only by hand-building constraints into the successor function)

CSP Representations

- Constraint graph:
 - nodes are variables
 - arcs are (binary) constraints
- Standard representation pattern:
 - variables with values
- Constraint graph simplifies search.
 - e.g. Tasmania is an independent subproblem.
- This problem: A binary CSP:
 - each constraint relates two variables

Varieties of CSPs

- Discrete variables
 - finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., *StartJob*₁ + $5 \leq StartJob_3$
- o Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- *Higher-order* constraints involve 3 or more variables
 - e.g., crypt-arithmetic column constraints
- *Preference* (soft constraints) e.g. *red* is better than *green* can be represented by a cost for each variable assignment
 - Constrained optimization problems.

Idea 1: CSP as a search problem

- $\odot~$ A CSP can easily be expressed as a search problem
 - Initial State: the empty assignment {}.
 - Successor function: Assign value to any unassigned variable provided that there is not a constraint conflict.
 - Goal test: the current assignment is complete.
 - Path cost: a constant cost for every step.
- Solution is always found at depth *n*, for *n* variables
 - Hence Depth First Search can be used

Search and branching factor

. . .

• n variables of domain size d

- Branching factor at the root is n*d
- Branching factor at next level is (n-1)*d
- Tree has n!*dⁿ leaves

Search and branching factor

- The variable assignments are *commutative*
 - Eg [step 1: WA = red; step 2: NT = green] equivalent to [step 1: NT = green; step 2: WA = red]
 - Therefore, a tree search, not a graph search
- Only need to consider assignments to a single variable at each node
 - b = d and there are d^n leaves (*n* variables, domain size d)

Search and Backtracking

😽 Penn Engineering

- Depth-first search for CSPs with single-variable assignments is called backtracking search
- The term backtracking search is used for a depth-first search that chooses values for one variable at a time and backtracks when a variable has no legal values left to assign.
- **o** Backtracking search is the basic *uninformed* algorithm for CSPs

How does this backtracking search differ from our previous formulation of a DFS?

Backtracking example

Backtracking example

Idea 2: Improving backtracking efficiency

- *General-purpose* methods & *general-purpose* heuristics can give huge gains in speed, *on average*
- Heuristics:
 - Q: Which variable should be assigned next?
 - 1. Most constrain*ed* variable
 - 2. (if ties:) Most constraining variable
 - Q: In what order should that variable's values be tried?
 - 3. Least constraining value
 - Q: Can we detect inevitable failure early?
 - 4. Forward checking

Heuristic 1: Most constrained variable

 Choose a variable with the fewest legal values

Heuristic 2: Most constrain*ing* variable

- Tie-breaker among most constrained variables
- Choose the variable with the most constraints on remaining variables

These two heuristics together lead to immediate solution of our example problem

Renn Engineering

Heuristic 3: Least constraining *value*

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remain

Allows 1 value for SA

Allows 0 values for SA

Note: demonstrated here independent of the other heuristics

Heuristic 4: Forward checking

o **Idea:**

- Keep track of *remaining* legal values for *unassigned* variables
- Terminate search when any unassigned variable has no remaining legal values

Northern Territory

Queensla

Forward checking

- o Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any unassigned variable has no remaining legal values

Northern Territory

Queens

Western Australia

Forward checking

- o Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any unassigned variable has no remaining legal values

Northern Territory

Queens

Western Australia

Forward checking

- o Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any unassigned variable has no remaining legal values

Northern Territory

Queensi

Western Australia

2

3

4

Assign value to unassigned variable

2

3

4

Forward check!

2

3

4

Assign value to unassigned variable

2

3

4

Forward check!

Picking up a little later after two steps of backtracking....

Assign value to unassigned variable

Forward check!

Assign value to unassigned variable

1

2

3

Forward check!

2

3

4

Assign value to unassigned variable

1

2

3

4

Forward check!

2

3

4

Assign value to unassigned variable

Towards Constraint propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation goes beyond forward checking & repeatedly enforces constraints locally

Arc Consistency, Constraint Propagation & AC-3

Idea 3 (*big* idea): *Inference* in CSPs

o CSP solvers combine search *and inference*

- Search
 - assigning a value to a variable
- Constraint propagation (inference)
 - Eliminates possible values for a variable if the value would violate local consistency
- Can do inference first, or intertwine it with search
 - You'll investigate this in the Sudoku homework

Local consistency

- Node consistency: satisfies unary constraints
 - This is trivial!
- Arc consistency: satisfies binary constraints
 - (X_i is arc-consistent w.r.t. X_i if for every value v in D_i, there is some value w in D_j that satisfies the binary constraint on the arc between X_i and X_j)

CSP Representations

- Constraint graph:
 - nodes are variables
 - edges are constraints

Edges to Arcs: From Constraint Graph to Directed Graph

- Given a pair of nodes X_i and X_j connected by a constraint *edge*, we represent this not by a single undirected edge, but a *pair of directed arcs*.
 - For a connected pair of nodes X_i and X_j, there are two arcs that connect them: (*i*,*j*) and (*j*,*i*).

 X_i

(i,j)

(i.i)

🐯 Penn Engineering

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

• If X loses a value, recheck neighbors of X

- Simplest form of propagation makes each arc consistent
- $\bigcirc X \rightarrow Y \text{ is consistent iff} \\ \text{for every value } x \text{ of } X \text{ there is some allowed } y$

- O Detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

😽 Penn Engineering

Arc Consistency

An arc (*i*,*j*) is arc consistent if and only if every value v on X_i is consistent with some label on Y_j .

To make an arc *(i,j)* arc consistent, for each value *v* on *X_i*, if there is no label on *Y_j* consistent with *v* then remove *v* from *X_i*

• Given *d* values, checking arc (i,j) takes $O(d^2)$ time worst case

50

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an Al computation posed as a CSP

Slide credit: Dan Klein and Pieter Abbeel http://ai.berkeley.edu

👼 Penn Engineering

- Approach:
 - Each intersection is a variable
 - Adjacent intersections impose constraints on each other
 - Solutions are physically realizable 3D interpretations

Replacing Search: Constraint Propagation Invented...

Dave Waltz's insight:

- By *iterating* over the graph, the arc-consistency *constraints* can be *propagated* along arcs of the graph.
- Search: Use constraints to add labels to find one solution
- Constraint Propagation: Use constraints to eliminate labels to simultaneously find all solutions

The Waltz/Mackworth Constraint Propagation Algorithm

- 1. Assign *every* node in the constraint graph a set of *all* possible values
- 2. Repeat until there is no change in the set of values associated with any node:
 - 3. For each node i:
 - 4. For each neighboring node j in the picture:
 - 5. Remove any value from *i* which is not arc consistent with *j*.

Inefficiencies: Towards AC-3

- 1. At each iteration, we only need to examine those X_i where at least one neighbor of X_i has lost a value in the previous iteration.
- 2. If X_i loses a value only because of arc inconsistencies with Y_j , we don't need to check Y_i on the next iteration.
- 3. Removing a value on X_i can only make Y_j arc-inconsistent with respect to X_i itself. Thus, we only need to check that (*j*,*i*) is still arc-consistent.

These insights lead a much better algorithm...

AC-3

function REMOVE-INCONSISTENT-VALUES(X_i , X_j) return *true* iff we remove a value

 $removed \leftarrow false$

for each x in DOMAIN[X_i] do

Add back arcs to neighbors whenever a node had values removed

AC-3: Worst Case Complexity Analysis

- \circ All nodes can be connected to *every* other node,
 - so each of *n* nodes must be compared against *n-1* other nodes,
 - so total # of arcs is **2*n*(n-1)**, *i.e.* **O**(**n**²)
- If there are *d* values, checking arc (i,j) takes *O*(*d*²) time
- Each arc (i,j) can only be inserted into the queue *d* times
- Worst case complexity: *O(n²d³)*

(For *planar* constraint graphs, the number of arcs can only be *linear in N* and the time complexity is only O(nd³))