.

LLl

O

a -

O

~ ')

3 2.2 n

= omm

z amm

— -

: LY = e

: o292 5

= = O > mmf

: O8r : B
OUwvA T aufhalf

What is Search For?

o Assumptions about the world: a single agent, deterministic actions, fully
observed state, discrete state space

o Planning: sequences of actions

: , , 71 21l 4 1] 2
= The path to the goal is the important thing
= Paths have various costs, depths 5 6 3l 4l 5
= Heuristics give problem-specific guidance
8 ||l 3| 1 6 (|| 7|l 8
o ldentification: assignments to variables ENEE B EHEENE
. The goal itself is important, not the path R RGR BEOEREBGE
= All paths at the same depth (for some formulations) B+ LhHEleaeh sttt
. 12l 1 1Fi 1 7 2 6117[1]13]9(2]4]8[5]6
CSPs are specialized for identification problems - A e
41119 5112(8|7]4[1]9]6|3]|5
8 71911314|5]218|6]1]|7]9

‘& Penn Engineering

Big idea

o Represent the constraints that solutions must satisfy in a uniform declarative
language
o Find solutions by GENERAL PURPOSE search algorithms with no changes from
problem to problem
= No hand-built transition functions
= No hand-built heuristics

o Just specify the problem in a formal declarative language, and a general-
purpose algorithm does everything else!

@ Penn Engineering

Constraint Satisfaction Problems

A CSP consists of:
= Ffinite set of variables X,, X,, ..., X

n

. Nonemﬁty domam of possible values
for each variable
D, D, ...D,where D, = {v,, ..., v}

= Finite set of constraints C,, C,, ..., C

* Each constraint C; limits the
values that variables can take,
, X, #X, Astate is defined as
an ass:gnment of values to some
or all variables.

o A consistent assignment does not violate
the constraints.

o Example problem: Sudoku

‘& Penn Engineering

All different

3
1
8
2
/

/

2 6|8 °
3

5
3
/
c 2|/ 3

.

Constraints in Sudoku

50
=
s
=

& Penn E

c
o
=
T
<
D
'
C
e
D)
W
=
Vg
+-J
=
0
S
+-J
Vp)
-
@
O

A

3

/

1

/

9

2 68 O

2

6

.

50
=
s
=

& Penn E

c
o
=
T
<
D
X
C
<
D)
W
=
Vg
+-J
=
0
S
+-J
Vp)
-
@
O

A
9

5

3

/

3 O

1

3

3

7/

2

/

c 2|/ 3

.

50
=
s
=

& Penn E

Constraint satisfaction problems

o An assignment is complete when every variable is assigned a value.
o Asolutiontoa CSPis acomplete, consistent assignment.

o Solutions to CSPs can be found by a completely general purpose algorithm, given
only the formal specification of the CSP.

o Beyond our scope: CSPs that require a solution that maximizes an objective
function.

‘& Penn Engineering

Applications \

o Map coloring
o Scheduling problems

- Job shop scheduling LS s, f-ncmcuns'i
| Telescoper PRl space - -'-.f? .-%; f-"’::.‘;;.;; &
!oe T 2\ ’i‘"':‘msrtcmt'
o Floor planning for VLSI AEETN
o Sudoku
O

‘& Penn Engineering

Example: Map-coloring

Northern
Territory

Westarn
Australia

Quesnsland

South
Australia

New South Wales

Victoria

T

o Variables: WA, NT, Q, NSW, V, SA, T
o Domains: D, ={red,green,blue}

o Constraints: adjacent regions must have different colors
= e.g, WA=NT
« S0 (WA,NT) must be in {(red,green),(red,blue),(green,red), ...}

‘& Penn Engineering

Example: Map-coloring

L

Tas@
Solutions: complete and consistent assignments

e.g., WA =red, NT = green,Q = red, NSW = green,
V =red, SA=Dblue, T = green

‘& Penn Engineering

Benefits of CSP

o Clean specification of many problems, generic goal, successor function &
heuristics

= Just represent problem as a CSP & solve with general package

o CSP “"knows"” which variables violate a constraint
= And hence where to focus the search

o CSPs: Automatically prune off all branches that violate constraints

= (State space search could do this only by hand-building constraints into
the successor function)

@ Penn Engineering

CSP Representations

o Constraint graph:
- nodes are variables
- arcs are (binary) constraints

o Standard representation pattern:
- variables with values

o Constraint graph simplifies search.

o This problem: A binary CSP:
- each constraint relates two variables

‘& Penn Engineering

Varieties of CSPs

o Discrete variables
= finite domains:
- nvariables, domain size d 2 O(d") complete assignments
- e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)
= infinite domains:
« integers, strings, etc.
- e.g., job scheduling, variables are start/end days for each job
- need a constraint language, e.g., Startfob, + 5 < Startjob,

o Continuous variables
= e.g., start/end times for Hubble Space Telescope observations
= linear constraints solvable in polynomial time by linear programming

@ Penn Engineering

Varieties of constraints

o Unary constraints involve a single variable,
= e.g., SA#green

o Binary constraints involve pairs of variables,
= e.g,SA#WA

o Higher-order constraints involve 3 or more variables
= e.g., crypt-arithmetic column constraints

o Preference (soft constraints) e.g. red is better than green can be
represented by a cost for each variable assignment

= Constrained optimization problems.

@ Penn Eng]'neering

ldea 1: CSP as a search problem

O A CSP can easily be expressed as a search
problem

« nitial State: the empty assignment 3.

. SUCCeSSOI’fUI’)Ct/OI’): Assign value to

any unassigned variable provided that
there is not a constraint conflict.

= Goal test: the current assignment is
complete.

= Path cost: a constant cost for every
step.

o Solution is always found at depth
n, for n variables

= Hence Depth First Search can be used

‘& Penn Engineering

Search and branching factor

n variables of domain size d

Branching factor at the root is n*d
Branching factor at next level is (n-1)*d
Tree has n!*d" leaves

‘& Penn Engineering

Search and branching factor

/\
o The variable assignments are commutative

Eg/ stelo = red; stNUZ NT = green 5
equivalent to [step 1: NT = green; step WA =red]

Therefore, a tree search, not a graph search

o Only need to consider assignments to a single variable at each
node

b =d and there are " leaves (n variables, domain size d)

@ Penn Eng]'neering

Search and Backtracking

o Depth-first search for CSPs with single-variable assignments is called
backtracking search

o The term backtracking search is used for a depth-first search that
chooses values for one variable at a time and backtracks when a

variable has no legal values left to assign.
o Backtracking search is the basic uninformed algorithm for CSPs

How does this backtracking search
differ from our previous formulation
of a DFS?

A
O
-
T
>
3
6.0

=

iV,
O
O
S
-

Y,
O
O

m

.

2.0
=
w
=
=

Penn E

-

LIL¥

.

Backtracking example

2.0
=
w
=
=

Penn E

ldea 2: Improving backtracking efficiency

. Generalaourpose methods & general-purpose heuristics can give huge gains
in speed, on average
e Heuristics:
* Q: Which variable should be assigned next?
1. Most constrained variable
2. (if ties:) Most constraining variable

 Q:Inwhat order should that variable’s values be tried?
3. Least constraining value

« Q: Can we detect inevitable failure early?
4. Forward checking

@ Penn Engineering

Heuristic 1: Most constrained variable

o Choose a variable with the
fewest legal values

Ry~

)
3
.. 3 -
o a.k.a. minimum remaining values
(MRV) heuristic

‘& Penn Engineering

Heuristic 2: Most constraining variable

o Tie-breaker among most
constrained variables

o Choose the variable with the
most constraints on remaining
variables

These two heuristics together lead to
immediate solution of our example
problem

Penn Engineering

Heuristic 3: Least constraining value

o @Given a variable, choose the least
constraining value:
the one that rules out the
fewest values in the
remain

i L Allows 1 value for SA

Lk _ Allows D values for SA

Note: demonstrated here independent of the
other heuristics

Penn Engineering

Heuristic 4: Forward checkins

o ldea:
= Keep track of remaining legal values for unassigned variables
= Terminate search when any unassigned variable has no remaining legal values

Fo

WA NT Q NSW v SA T
EfFEENFEIETEIEf EIE"EINTDE

New data

structure

‘& Penn Engineering

Forward checking

O

|dea;

= Keep track of remaining legal values for unassigned variables
= Terminate search when any unassigned variable has no remaining legal values

@ Penn Engineering

WA NT Q NSW v SA T
ENEENEENEENE|ENE|ENEIENE
B '"'EfEPEEPEENE|] "EEODE

S

Forward checking

o ldea:

= Keep track of remaining legal values for unassigned variables
= Terminate search when any unassigned variable has no remaining legal values

@ Penn Engineering

WA

NT

NSW

v

SA

T

S

Forward checking

o ldea:

I
"%
= Keep track of remaining legal values for unassigned variables

= Terminate search when any unassigned variable has no remaining legal values

@ Penn Engineering

Example: 4-Queens Problem

X1 X2
1 2 3 4 {1121314} {1121314}
1 +'. o0
2| | @
3 O
* @ X3 X4
{1121314} {1121314}

Assign value to unassigned variable

‘& Penn Engineering

Example: 4-Queens Problem

X1 X2
1 2 3 4 {1121314} { / 1314}
1+ 0®
2| @
3 @
* ® X3 X4
{ 121 14} { 12131 }

Forward check!

‘& Penn Engineering

Example: 4-Queens Problem

i | | x
L2 3 4 {(1,2,3,4} {, 3.4}
1400 ®
[0@
30 4O @®
¥ 0 X3 X4
{2, 4 {23 3

Assign value to unassigned variable

‘& Penn Engineering

Example: 4-Queens Problem

X1] X2
12 03 4 {1,2,3,4} {, 3,4
1400 ®
AR
30 4O @®
) e X4
{ ac trqc |11 (2 3

@ Penn Engineering

Example: 4-Queens Problem

Picking up a little later after

two steps of backtracking.... X1 X2
1 2 3 4 { 2,34} 11,2,3,4}
1 @
Y
3 | @
4 O X3 X4

{1121314} {1121314}

Assign value to unassigned variable

‘& Penn Engineering

Example: 4-Queens Problem

X1 X2
1 2 3 4 {121314} {I / 14}
1 @
90 ®
3 @
* ® X3 X4
{11 131 } {11 1314}

Forward check!

‘& Penn Engineering

Example: 4-Queens Problem

X1 X2
1 2 3 4 { ’2’3’4} { I 7 14}
1 @
2+ 00 e
3| @@
‘| rHee X3 X4
{1I I3I } {1’ ’314}

Assign value to unassigned variable

‘& Penn Engineering

Example: 4-Queens Problem

X1 X2
1 2 3 4 1,234} 1oAY
1 |@
<000
3| @@
‘| +ee X3 X4

{1I I 7 } {1I I3I }

Forward check!

‘& Penn Engineering

Example: 4-Queens Problem

X1 X2
L2 3 4 {234 <., .4
1 | @+®
24-H0 0 e
3| @@
‘L rHee X3 X4

{11 I 7 } {1I I3I }
Assign value to unassigned variable

‘& Penn Engineering

Example: 4-Queens Problem

X1 X2
L2 34 { 2,3,4} (., 4
[[eHe
<000
3| @@
‘| +ee X3 X4

Forward check!

‘& Penn Engineering

Example: 4-Queens Problem

X1 X2
L2 3 4 { 2,34} (., 4
1 | @+®
2100 e
3| @@
‘L +ee X3 X4

{11 I 7 } { 4 I3I }
Assign value to unassigned variable

‘& Penn Engineering

Towards Constraint propagati

Tasmi
.

o Forward checking propagates information from assigned to unassigned variables,
but doesn't provide early detection for all failures:

WA NT Q NSW v SA T
ENFEENFEIETEIETEIEfEINE"EIETDE
B "'EjENEEfEE"E| "EIEYEH
1 mET N EETE 1 Y

o NT and SA cannot both be blue!

o Constraint propagation goes beyond forward checking & repeatedly enforces
constraints locally

@ Penn Engineering

.

Constraint Propagation & AC-3

Arc Consistency,

2.0
=
4
=
=

&) Penn E

ldea 3 (big idea): Inference in CSPs

o CSP solvers combine search and inference
= Search
« assigning a value to a variable
= Constraint propagation (inference)

« Eliminates possible values for a variable
if the value would violate local consistency

= Can do inference first, or intertwine it with search
« You'll investigate this in the Sudoku homework

o Local consistency
= Node consistency: satisfies unary constraints
« This is triviall
= Arc consistency: satisfies binary constraints

« (Xiis arc-consistent w.r.t. X, if for every value vin D, there is some
VaLl]IJ)e(;/V in D; that satisfies the binary constraint on the arc between X,
and X;

J

@ Penn Engineering

CSP Representations

o Constraint graph:
. nodes are variables
. edges are constraints

Penn Engineering

Edges to Arcs: From Constraint Graph
to Directed Graph

o Given a pair of nodes X; and X
connected by a constraint edge
we represent this not by a single
undirected edge, but a pair of
directed arcs.

For a connected pair of
nodes X; andX there are (i)
two arcs that connect them: J

(i,/) and (/,i).

> G

‘& Penn Engineering

Arc consistency

o Simplest form of
propagation makes each arc
consistent

o X 2>Yis consistent iff
for every value x of X there is some
allowed y

‘& Penn Engineering

Arc consistency

o Simplest form of
propagation makes each arc
consistent

o X 2>Yis consistent iff
for every value x of X there is some
allowed y

L E[e e m EErE

‘& Penn Engineering

Arc consistency

o Simplest form of propagation
makes each arc consistent

o X >Yis consistent iff
for every value x of X there is some
allowed y

o If Xloses a value, recheck
neighbors of X

‘& Penn Engineering

Arc consistency

O Simplest form of propagation makes each arc
consistent

O X=>Yis consistent iff
for every value x of X there is some allowed y

@) };X loses a value, we need to recheck neighbors of

O

Detects failure earlier than forward checking

©)

Can be run as a preprocessor or after each
assignment

‘& Penn Engineering

Arc Consistency

An arc (i,j) is arc consistent if and only if every value v on X; is
consistent with some label on Y,

To make an arc (i,j) arc consistent,
for each valuevon X;,
if there is no label on Y; consistent with v

then remove v from X;

o Given d values, checking arc (i,j) takes O(d?) time worst case

@ Penn Engineering

Example: The Waltz Algorithm

o The Waltz algorithm is for
interpreting line drawings of
solid polyhedra as 3D objects

o An early example of an Al
computation posed as a CSP

*?
= Approach:

= Each intersection is a variable

= Adjacent intersections impose
constraints on each other

= Solutions are physically
realizable 3D interpretations

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu

‘& Penn Engineering

Replacing Search:
Constraint Propagation Invented...

Dave Waltz's insight:

o By iteratingover the graph, the arc-consistency constraints
can be propagated along arcs of the graph.

o Search: Use constraints to add labels to find one solution

o Constraint Propagation: Use constraints to eliminate labels to
simultaneously find all solutions

@ Penn Engineering

The Waltz/Mackworth Constraint Propagation
Algorithm

1. Assign every node in the constraint graph a set of all possible values

2. Repeat until there is no change in the set of values associated with
any node:

3. For each node i:

4. For each neighboring node; in the picture:

5. Remove any value from i which is not arc
consistent with J.

@ Penn Engineering

Inefficiencies: Towards AC-3

1. At each iteration, we only need to examine those X; where at least one
neighbor of X. has lost a value in the previous iteration.

2. If X;loses a value only because of arc inconsistencies with Y, we don’t
need to check Y; on the next iteration.

3. Removing a value on X; can only make Y, arc-inconsistent with respect
to X itself. Thus, we only need to check that (1,1) is still arc-consistent.

These insights lead a much better algorithm...

@ Penn Engineering

AC-3

function AC-3(csp) return the CSP, possibly with reduced domains
inputs: ¢sp, a binary csp with variables {X,, X, ..., X}
local variables: queue, a queue of arcs initially the arcs in csp
while queue is not empty do

Keep track of what
(X X;) < queue.pop()
if REMOVE-INCONSISTENT-VALUES(X, X) then arcs we need to
for each X, in NEIGHBORS[X;] - {X;} do pProcess

add (X,, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X; X)) return true iff we remove a value
removed « false
for each x in DOMAIN[X;] do

if no value y in DOMAINI[X;] allows (x,y) to satisfy Add back arcs to
the constraints between X; and X; neigh bors whenever a

then delete x from DOMAIN[X;]; removed « true node had values removed

return removed

AC-3: Worst Case Complexity Analysis

o All nodes can be connected to every other node,

= 5o each of n nodes must be compared against n-1 other nodes,
= so total # of arcs is 2*n*(n-1), i.e. O(n?)

o If there are d values, checking arc (i,j) takes O(d?) time
o Each arc (i,j) can only be inserted into the queue d times
o Worst case complexity: O(n‘d?)

(For planar constraint graphs, the number of arcs can only be /inear in N
and the time complexity is only O(nd?))

@ Penn Engineering

	Slide Number 1
	Slide Number 2
	Big idea
	Constraint Satisfaction Problems
	Constraints in Sudoku
	Constraints in Sudoku
	Constraints in Sudoku
	Constraint satisfaction problems
	Applications
	Example: Map-coloring
	Example: Map-coloring
	Benefits of CSP
	CSP Representations
	Varieties of CSPs
	Varieties of constraints
	Idea 1: CSP as a search problem
	Search and branching factor
	Search and branching factor
	Search and Backtracking
	Backtracking example
	Backtracking example
	Idea 2: Improving backtracking efficiency
	Heuristic 1: Most constrained variable
	Heuristic 2: Most constraining variable
	Heuristic 3: Least constraining value
	Heuristic 4: Forward checking
	Forward checking
	Forward checking
	Forward checking
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Example: 4-Queens Problem
	Towards Constraint propagation
	Slide Number 42
	Idea 3 (big idea): Inference in CSPs
	CSP Representations
	Edges to Arcs: From Constraint Graph to Directed Graph
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency
	Arc Consistency
	Example: The Waltz Algorithm
	Replacing Search:�Constraint Propagation Invented…
	The Waltz/Mackworth Constraint Propagation Algorithm
	Inefficiencies: Towards AC-3
	AC-3
	AC-3: Worst Case Complexity Analysis

