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o Assumptions about the world: a single agent, deterministic actions, fully 
observed state, discrete state space

o Planning: sequences of actions
▪ The path to the goal is the important thing
▪ Paths have various costs, depths
▪ Heuristics give problem-specific guidance

o Identification: assignments to variables
▪ The goal itself is important, not the path
▪ All paths at the same depth (for some formulations)
▪ CSPs are specialized for identification problems

What is Search For?
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Big idea

o Represent the constraints that solutions must satisfy in a uniform declarative
language

o Find solutions by GENERAL PURPOSE search algorithms with no changes from 
problem to problem
▪ No hand-built transition functions
▪ No hand-built heuristics

o Just specify the problem in a formal declarative language, and a general-
purpose algorithm does everything else!
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Constraint Satisfaction Problems

A CSP consists of:
▪ Finite set of variables X1, X2, …, Xn

▪ Nonempty domain of possible values 
for each variable 
D1, D2, … Dn where Di = {v1, …, vk}

▪ Finite set of constraints C1, C2, …, Cm 

• Each constraint Ci limits the 
values that variables can take, 
e.g., X1 ≠ X2 A state is defined as 
an assignment of values to some 
or all variables.

o A consistent assignment does not violate 
the constraints. 
o Example problem: Sudoku
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Constraints in Sudoku

All different
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Constraints in Sudoku All different
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Constraint satisfaction problems

o An assignment is complete when every variable is assigned a value. 

o A solution to a CSP is a complete, consistent assignment.

o Solutions to CSPs can be found by a completely general purpose algorithm, given 
only the formal specification of the CSP.

o Beyond our scope: CSPs that require a solution that maximizes an objective 
function. 
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Applications

o Map coloring
o Scheduling problems

▪ Job shop scheduling 
▪ Scheduling the Hubble Space 

Telescope 
o Floor planning for VLSI 
o Sudoku
o …
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Example: Map-coloring

o Variables: WA, NT, Q, NSW, V, SA, T
o Domains: Di = {red,green,blue}
o Constraints: adjacent regions must have different colors

▪ e.g., WA ≠ NT
• So (WA,NT) must be in {(red,green),(red,blue),(green,red), …} 
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Example: Map-coloring

Solutions: complete and consistent assignments
▪ e.g., WA = red, NT = green,Q = red, NSW = green,

V = red, SA = blue, T = green
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Benefits of CSP

o Clean specification of many problems, generic goal, successor function & 
heuristics
▪ Just represent problem as a CSP & solve with general package

o CSP “knows” which variables violate a constraint
▪ And hence where to focus the search

o CSPs: Automatically prune off all branches that violate constraints
▪ (State space search could do this only by hand-building constraints into 

the successor function)
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CSP Representations
o Constraint graph: 

▪ nodes are variables
▪ arcs are  (binary)  constraints

o Standard representation pattern: 
▪ variables with values

o Constraint graph simplifies search.
▪ e.g. Tasmania is an independent subproblem.

o This problem: A binary CSP: 
▪ each constraint relates two variables
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Varieties of CSPs

o Discrete variables
▪ finite domains:

• n variables, domain size d  O(dn) complete assignments
• e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)

▪ infinite domains:
• integers, strings, etc.
• e.g., job scheduling, variables are start/end days for each job
• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

o Continuous variables
▪ e.g., start/end times for Hubble Space Telescope observations
▪ linear constraints solvable in polynomial time by linear programming
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Varieties of constraints
o Unary constraints involve a single variable, 

▪ e.g., SA ≠ green

o Binary constraints involve pairs of variables,
▪ e.g., SA ≠ WA

o Higher-order constraints involve 3 or more variables
▪ e.g., crypt-arithmetic column constraints

o Preference (soft constraints) e.g. red is better than green can be 
represented by a cost for each variable assignment 
▪ Constrained optimization problems.
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Idea 1: CSP as a search problem

o A CSP can easily be expressed as a search 
problem
▪ Initial State: the empty assignment {}.

▪ Successor function: Assign value to 
any unassigned variable provided that
there is not a constraint conflict.

▪ Goal test: the current assignment is 
complete.

▪ Path cost: a constant cost for every 
step.

o Solution is always found at depth 
n, for n variables
▪ Hence Depth First Search can be used
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Search and branching factor

…

• n variables of domain size d 
• Branching factor at the root is n*d
• Branching factor at next level is (n-1)*d
• Tree has n!*dn leaves
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Search and branching factor

o The variable assignments are commutative
▪ Eg [ step 1: WA = red; step 2: NT = green ] 

equivalent to  [ step 1: NT = green; step 2: WA = red ]
▪ Therefore, a tree search, not a graph search

o Only need to consider assignments to a single variable at each 
node
▪ b = d and there are dn leaves (n variables, domain size d )
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Search and Backtracking

o Depth-first search for CSPs with single-variable assignments is called 
backtracking search

o The term backtracking search is used for a depth-first search that 
chooses values for  one variable at a time and backtracks when a 
variable has no legal values left to assign. 

o Backtracking search is the basic uninformed algorithm for CSPs

How does this backtracking search 
differ from our previous formulation 

of a DFS?
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Backtracking example
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Backtracking example
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Idea 2: Improving backtracking efficiency

• General-purpose methods & general-purpose heuristics can give huge gains 
in speed, on average

• Heuristics:
▪ Q: Which variable should be assigned next?

1. Most constrained variable
2. (if ties:) Most constraining variable

▪ Q: In what order should that variable’s values be tried?
3.   Least constraining value

▪ Q: Can we detect inevitable failure early?
4.   Forward checking
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Heuristic 1: Most constrained variable

o Choose a variable with the 
fewest legal values

o a.k.a. minimum remaining values 
(MRV) heuristic
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Heuristic 2: Most constraining variable

o Tie-breaker among most 
constrained variables

o Choose the variable with the 
most constraints on remaining 
variables

These two heuristics together lead to 
immediate solution of our example 

problem
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Heuristic 3: Least constraining value

o Given a variable, choose the least 
constraining value:
▪ the one that rules out the 

fewest values in the 
remaining variables

Note: demonstrated here independent  of the 
other heuristics
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Heuristic 4: Forward checking 
o Idea: 

▪ Keep track of remaining legal values for unassigned variables
▪ Terminate search when any unassigned variable has no remaining legal values

(A first step towards Arc Consistency & AC-3)

26

New data 
structure
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Forward checking
o Idea: 

▪ Keep track of remaining legal values for unassigned variables
▪ Terminate search when any unassigned variable has no remaining legal values

27
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Forward checking
o Idea: 

▪ Keep track of remaining legal values for unassigned variables
▪ Terminate search when any unassigned variable has no remaining legal values

Terminate!  No possible value for SA

29
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Example: 4-Queens Problem

30

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Assign value to unassigned variable
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32 41
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X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{  ,  ,3,4}

Forward check!
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Example: 4-Queens Problem
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X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2,  , }

X2
{ , ,3,4}

Backtrack!!!

Forward check!
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Example: 4-Queens Problem

34

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Picking up a little later after 
two steps of backtracking….

Assign value to unassigned variable
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X4
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Forward check!
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Towards Constraint propagation
o Forward checking propagates information from assigned to unassigned variables, 

but doesn't provide early detection for all failures:

o NT and SA cannot both be blue!
o Constraint propagation goes beyond forward checking & repeatedly enforces 

constraints locally
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Arc Consistency, 
Constraint Propagation & AC-3
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Idea 3 (big idea): Inference in CSPs 
o CSP solvers combine search and inference

▪ Search 
• assigning a value to a variable

▪ Constraint propagation (inference)
• Eliminates possible values for a variable 

if the value would violate local consistency
▪ Can do inference first, or intertwine it with search

• You’ll investigate this in the Sudoku homework
o Local consistency

▪ Node consistency: satisfies unary constraints
• This is trivial!

▪ Arc consistency: satisfies binary constraints
• (Xi is arc-consistent w.r.t. Xj if for every value v in Di, there is some 

value w in Dj that satisfies the binary constraint on the arc between Xiand Xj)
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CSP Representations

o Constraint graph: 
▪ nodes are variables
▪ edges are constraints
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Edges to Arcs: From Constraint Graph 
to Directed Graph
o Given a pair of nodes Xi  and Xj

connected by a constraint edge, 
we represent this not by a single 
undirected edge, but a pair of 
directed arcs.
▪ For a connected pair of 

nodes Xi and Xj , there are 
two arcs that connect them: 
(i,j) and (j,i).

Xi Xj

(i,j)

(j,i)

⇒Xi Xj
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Arc consistency

o Simplest form of 
propagation makes each arc 
consistent

o X Y is consistent iff
for every value x of X there is some
allowed y
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Arc consistency

o Simplest form of 
propagation makes each arc 
consistent

o X Y is consistent iff
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allowed y
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Arc consistency

o Simplest form of propagation 
makes each arc consistent

o X Y is consistent iff
for every value x of X there is some
allowed y

o If X loses a value, recheck 
neighbors of X

48
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Arc consistency
o Simplest form of propagation makes each arc 

consistent
o X Y is consistent iff

for every value x of X there is some allowed y

o If X loses a value, we need to recheck neighbors of 
X

o Detects failure earlier than forward checking
o Can be run as a preprocessor or after each 

assignment

49
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Arc Consistency

An arc (i,j) is arc consistent if and only if every value v on Xi is 
consistent with some label on Yj.

To make an arc (i,j) arc consistent, 
for each value v on Xi , 

if there is no label on Yj consistent with v 
then remove v from Xi

o Given d values, checking arc (i,j) takes O(d2) time worst case

50
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Example: The Waltz Algorithm
o The Waltz algorithm is for 

interpreting line drawings of 
solid polyhedra as 3D objects

o An early example of an AI 
computation posed as a CSP 

 Approach:
 Each intersection is a variable
 Adjacent intersections impose 

constraints on each other
 Solutions are physically 

realizable 3D interpretations

?

Slide credit: Dan Klein and Pieter Abbeel
http://ai.berkeley.edu
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Replacing Search:
Constraint Propagation Invented…
Dave Waltz’s insight: 

o By iterating over the graph, the arc-consistency constraints 
can be propagated along arcs of the graph.

o Search:  Use constraints to add labels to find one solution

o Constraint Propagation:  Use constraints to eliminate labels to 
simultaneously find all solutions
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The Waltz/Mackworth Constraint Propagation 
Algorithm

1. Assign every node in the constraint graph a set of all possible values 
2. Repeat until there is no change in the set of values associated with 

any node:
3. For each node i:

4. For each neighboring node j in the picture:
5. Remove any value from i which is not arc 

consistent with j. 
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Inefficiencies: Towards AC-3

1. At each iteration, we only need to examine those Xi  where at least one 
neighbor of Xi  has lost a value in the previous iteration.

2. If Xi loses a value only because of arc inconsistencies with Yj, we don’t 
need to check Yj on the next iteration.

3. Removing a value on Xi can only make Yj arc-inconsistent with respect 
to Xi  itself. Thus, we only need to check that (j,i) is still arc-consistent.

These insights lead a much better algorithm...
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Add back arcs to 
neighbors whenever a 

node had values removed

AC-3
function AC-3(csp) return the CSP, possibly with reduced domains

inputs: csp, a binary csp with variables {X1, X2, …, Xn}
local variables: queue, a queue of arcs initially the arcs in csp
while queue is not empty do

(Xi, Xj) ← queue.pop()
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then

for each Xk in NEIGHBORS[Xi ] – {Xj} do 
add (Xk, Xi) to queue 

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) return true iff we remove a value
removed ← false
for each x in DOMAIN[Xi] do

if no value y in DOMAIN[Xj] allows (x,y) to satisfy 
the constraints between Xi and Xj

then delete x from DOMAIN[Xi]; removed ← true
return removed

Keep track of what 
arcs we need to 

process
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AC-3: Worst Case Complexity Analysis

o All nodes can be connected to every other node, 
▪ so each of n nodes must be compared against n-1 other nodes, 
▪ so total # of arcs is 2*n*(n-1), i.e. O(n2)

o If there are d values, checking arc (i,j) takes O(d2) time
o Each arc (i,j) can only be inserted into the queue d times
o Worst case complexity: O(n2d3)

(For planar constraint graphs, the number of arcs can only be linear in N 
and the time complexity is only O(nd3))
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