
CIS 521:
ARTIFICIAL INTELLIGENCE

Harry Smith

Games and
Adversarial
Search

CIS 550 | Property of Penn Engineering | 2

o Part 1: Games as Search

▪ Motivation

▪ Game-playing AI successes

▪ Game Trees

▪ Evaluation Functions

o Part II: Adversarial Search

▪ The Minimax Rule

▪ Alpha-Beta Pruning

Games: Outline of Unit

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 3CIS 421/521 |

oMay 11, 1997

CIS 550 | Property of Penn Engineering | 4CIS 421/521 |

oRatings of human and computer chess champions

https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/

CIS 550 | Property of Penn Engineering | 5

o Bulleted list

▪ Bulleted list level 2

Content font: Open Sans Size 20

Heading font: Open Sans Bold 34
Code block: Roboto Mono Size 20 with Gray background

Colors: Purple Yellow Cyan (accent) Light gray

(background)

May 11, 1997

CIS 421/521 |

Callout box

Callout box

CIS 550 | Property of Penn Engineering | 6

o Multiagent

o Static: No change while an agent is deliberating.

o Discrete: A finite set of percepts and actions.

o Fully observable: An agent's sensors give it the complete state of the environment.

o Strategic: The next state is determined by the current state and the action executed

by the agent and the actions of one other agent.

The Simplest Game Environment

CIS 421/521 |

“Strategic” is another way of saying
deterministic in the context of a

multiagent game

There’s tension between “fully
observable” and “multiagent.” Why?

CIS 550 | Property of Penn Engineering | 7

1. Two players alternate moves
2. Zero-sum: one player’s loss is another’s gain
3. Clear set of legal moves
4. Well-defined outcomes (e.g. win, lose, draw)

o Examples:
▪ Chess, Checkers, Go,
▪ Mancala, Tic-Tac-Toe, Othello …

Key properties of our games

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 8

o Most card games (e.g. Hearts, Bridge, etc.) and Scrabble
▪ Stochastic, not deterministic
▪ Not fully observable: lacking in perfect information

o Real-time strategy games
▪ Continuous rather than discrete
▪ No pause between actions, don’t take turns

o Cooperative games

More complicated games

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 9CIS 421/521 |

https://youtu.be/-CbyAk3Sn9I

Pac-Man

https://youtu.be/-CbyAk3Sn9I

CIS 550 | Property of Penn Engineering | 10

1. Two players: MAX and MIN; MAX moves first.
2. MAX and MIN take turns until the game is over.
3. Winner gets award, loser gets penalty.

o Games as search:
▪ Initial state: e.g. board configuration of chess
▪ Successor function: list of (move,state) pairs specifying legal moves.
▪ Terminal test: Is the game finished?
▪ Utility function: Gives numerical value of terminal states.

e.g. win (+∞), lose (-∞) and draw (0)
▪ MAX uses search tree to determine next move.

Formalizing the Game setup

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 11

o General Scheme (from one player’s perspective!)
1. Consider all legal successors to the current state (‘board position’)
2. Evaluate each successor board position
3. Pick the move which leads to the best board position.
4. After your opponent moves, repeat.

o Design issues
1. Representing the ‘board’
2. Representing legal next boards
3. Evaluating positions
4. Looking ahead

How to Play a Game by Searching

CIS 421/521 |

Do any of these pose new
challenges compared to what we’ve

seen before?

CIS 550 | Property of Penn Engineering | 12

o Hexapawn is played on a 3x3 chessboard

o Only standard pawn moves:
1. A pawn moves forward one square onto an empty square
2. A pawn “captures” an opponent pawn by moving diagonally forward one

square, if that square contains an opposing pawn. The opposing pawn is
removed from the board.

Hexapawn: A very simple Game

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 13

o Hexapawn is played on a 3x3 chessboard

o Player P1 wins the game against P2 when:
▪ One of P1’s pawns reaches the far side of the board, or
▪ P2 cannot move because no legal move is possible.
▪ P2 has no pawns left.
(Invented by Martin Gardner in 1962, with learning “program” using match boxes.)

Hexapawn: A very simple Game

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 14CIS 421/521 |

o Hexapawn: Three Possible First Moves

White moves

⬤ ⬤ ⬤

⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤

CIS 550 | Property of Penn Engineering | 15

o Represent the game problem space by a tree:
▪ Nodes represent ‘board positions’; edges represent legal moves.
▪ Root node is the first position in which a decision must be made.

Game Trees

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 16CIS 421/521 |

o Hexapawn: Simplified Game Tree for 2 Moves
White to move

Black to move

White
to move

⬤ ⬤ ⬤

⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤

⬤ ⬤⬤ ⬤⬤ ⬤ ⬤

⬤
⬤ ⬤

⬤
⬤ ⬤

⬤
⬤ ⬤ ⬤

⬤

⬤⬤ ⬤

CIS 550 | Property of Penn Engineering | 17CIS 421/521 |

o Adversarial Search

CIS 550 | Property of Penn Engineering | 18CIS 421/521 |

o Battle of Wits

https://www.youtube.com/watch?v=rMz7JBRbmNo

https://www.youtube.com/watch?v=rMz7JBRbmNo

CIS 550 | Property of Penn Engineering | 19

o Two players: MAX, MAX’s opponent MIN
o All play is computed from MAX’s vantage point.
o When MAX moves, MAX attempts to MAXimize MAX’s outcome.
o When MAX’s opponent moves, they attempt to MINimize MAX’s outcome.

o WE TYPICALLY ASSUME MAX MOVES FIRST:

o Label the root (level 0) MAX
o Alternate MAX/MIN labels at each successive tree level (ply).
o Even levels represent turns for MAX
o Odd levels represent turns for MIN

MAX & MIN Nodes : An egocentric view

CIS 421/521 |

Each player’s move is a ply, so after
two plies, MAX plays again.

CIS 550 | Property of Penn Engineering | 20

o Represent the game problem space by a tree:
▪ Nodes represent ‘board positions’; edges represent legal moves.
▪ Root node is the first position in which a decision must be made.

o Evaluation function f assigns real-number scores
to `board positions’ without reference to path

o Terminal nodes represent ways the game could end, labeled with the
desirability of that ending (e.g. win/lose/draw or a numerical score)

Game Trees

CIS 421/521 |

Games are (usually) concerned with
the destination rather than the

journey.

CIS 550 | Property of Penn Engineering | 21

o Evaluates how good a ‘board position’ is
o Based on static features of that board alone
o Zero-sum assumption lets us use one function to describe goodness for

both players.
▪ f(n)>0 if MAX is winning in position n

▪ f(n)=0 if position n is tied

▪ f(n)<0 if MIN is winning in position n
o Build using expert knowledge,

▪ Tic-tac-toe: f(n)=(# of 3 lengths open for MAX)- (# open for MIN)

Evaluation functions: f(n)

CIS 421/521 |

Evaluation function at a terminal
state is usually defined separately
(e.g. positive inf, zero, negative inf)

CIS 550 | Property of Penn Engineering | 22CIS 421/521 |

o f(n)=# of potential three-lines for X –
o # of potential three-line for O

o f(n)=0 if n is a terminal tie
o f(n)=+ ∞ if n is a terminal win
o f(n)=- ∞ if n is a terminal loss

A Partial Game Tree for Tic-Tac-Toe

f(n)=# of potential three-lines for X –
of potential three-line for O

f(n)=0 if n is a terminal tie​
f(n)=+ ∞ if n is a terminal win​
f(n)=- ∞ if n is a terminal loss​

f(n)=2f(n)=8-5=3 f(n)=3 f(n)=2 f(n)=4 f(n)=2 f(n)=3 f(n)=2 f(n)=3

f(n)=6-5=1 f(n)=0 f(n)=1

f(n)=6-3=3 f(n)=6-4=2 f(n)=6-2=4

-∞ 0 + ∞

CIS 550 | Property of Penn Engineering | 23

o Claude Shannon argued for a chess evaluation function in a 1950 paper

o Alan Turing defined function in 1948:
f(n)=(sum of A’s piece values)

-(sum of B’s piece values)

o More complex: weighted sum
of positional features:

Σ wi featurei(n)

o Deep Blue had >8000 features

Chess Evaluation Functions

CIS 421/521 |

Pawn​ 1.0​

Knight​ 3.0​
Bishop​ 3.25​
Rook​ 5.0​
Queen​ 9.0​

Pieces values for a simple Turing-
style evaluation function often taught
to novice chess players

Positive: rooks on open files, knights in​
closed positions, control of the center,

developed pieces​

Negative: doubled pawns, wrong-colored
bishops in closed positions, isolated pawns, pinned pieces​

Examples of more complex features

CIS 550 | Property of Penn Engineering | 24

Some Chess Positions and their Evaluations

CIS 421/521 |

White to move​
f(n)=(9+3)-(5+5+3.25)​

=-1.25

… Nxg5??​
f(n)=(9+3)-(5+5)​

=2

Uh-oh: Rxg4+​
f(n)=(3)-(5+5)​

=-7
And black may
force checkmateSo, considering our opponent’s possible​

responses would be wise.​

CIS 550 | Property of Penn Engineering | 25

The Minimax Rule (AIMA 5.2)

CIS 421/521 |

CIS 521:
ARTIFICIAL INTELLIGENCE

Harry Smith

Minimax and
Alpha-Beta
Pruning

CIS 550 | Property of Penn Engineering | 27

o Idea: Make the best move for MAX assuming that MIN always replies with the best
move for MIN

o Easily computed by a recursive process
• The backed-up value of each node in the tree is determined by the values of its

children:

• For a MAX node, the backed-up value is the maximum of the values of its
children (i.e. the best for MAX)

• For a MIN node, the backed-up value is the minimum of the values of its
children (i.e. the best for MIN)

The Minimax Rule: “Don’t play hope chess”

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 28

o Until game is over:

1. Start with the current position as a MAX node.

2. Expand the game tree a fixed number of ply.

3. Apply the evaluation function to the leaf positions.

4. Calculate back-up values bottom-up.

5. Pick the move assigned to MAX at the root

6. Wait for MIN to respond

The Minimax Procedure

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 29

o Minimax search:

▪ A state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value: the best
achievable utility against a rational (optimal)
adversary

Adversarial Search (Minimax)

CIS 521 | 2

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

CIS 550 | Property of Penn Engineering | 30

Minimax Implementation

CIS 521 | 3

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

CIS 550 | Property of Penn Engineering | 31

o Definition of optimal play for MAX assumes MIN plays optimally:
▪ Maximizes worst-case outcome for MAX.
▪ (Classic game theoretic strategy)

o But if MIN does not play optimally, MAX will do even better.
▪ This theorem is not hard to prove

What if MIN does not play optimally?

CIS 421/521 |

CIS 550 | Property of Penn Engineering | 32

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

CIS 550 | Property of Penn Engineering | 33

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

CIS 550 | Property of Penn Engineering | 34

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

CIS 550 | Property of Penn Engineering | 35

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

+∞

CIS 550 | Property of Penn Engineering | 36

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

+∞

CIS 550 | Property of Penn Engineering | 37

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

+∞

CIS 550 | Property of Penn Engineering | 38

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

+∞

CIS 550 | Property of Penn Engineering | 39

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

3

3

CIS 550 | Property of Penn Engineering | 40

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

83

3

CIS 550 | Property of Penn Engineering | 41

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

83

3

CIS 550 | Property of Penn Engineering | 42

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

8 123

3

CIS 550 | Property of Penn Engineering | 43

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

8 123

3

CIS 550 | Property of Penn Engineering | 44

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞

8 123

3

CIS 550 | Property of Penn Engineering | 45

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

CIS 550 | Property of Penn Engineering | 46

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

CIS 550 | Property of Penn Engineering | 47

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

+∞

CIS 550 | Property of Penn Engineering | 48

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

+∞

CIS 550 | Property of Penn Engineering | 49

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

+∞

CIS 550 | Property of Penn Engineering | 50

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

+∞

2

CIS 550 | Property of Penn Engineering | 51

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

2

2

CIS 550 | Property of Penn Engineering | 52

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

42

2

CIS 550 | Property of Penn Engineering | 53

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

42

2

CIS 550 | Property of Penn Engineering | 54

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2

CIS 550 | Property of Penn Engineering | 55

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2

CIS 550 | Property of Penn Engineering | 56

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2

CIS 550 | Property of Penn Engineering | 57

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2

CIS 550 | Property of Penn Engineering | 58

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 +∞

CIS 550 | Property of Penn Engineering | 59

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 +∞

CIS 550 | Property of Penn Engineering | 60

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 +∞

CIS 550 | Property of Penn Engineering | 61

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 +∞

14

CIS 550 | Property of Penn Engineering | 62

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 14

14

CIS 550 | Property of Penn Engineering | 63

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 14

514

CIS 550 | Property of Penn Engineering | 64

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2

514

5

CIS 550 | Property of Penn Engineering | 65

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 5

5 214

CIS 550 | Property of Penn Engineering | 66

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214

CIS 550 | Property of Penn Engineering | 67

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214

CIS 550 | Property of Penn Engineering | 68

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214

CIS 550 | Property of Penn Engineering | 69

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214

CIS 550 | Property of Penn Engineering | 70

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214

CIS 550 | Property of Penn Engineering | 71

o During Minimax, keep track of two additional values:
▪ α: MAX’s current lower bound on MAX’s outcome
▪ β: MIN’s current upper bound on MIN’s outcome

o MAX will never allow a move that could lead to a worse score (for MAX) than α
o MIN will never allow a move that could lead to a better score (for MAX) than β

o Therefore, stop evaluating a branch whenever:
▪ When evaluating a MAX node: a value 𝑣𝑣 ≥ 𝛽𝛽 is backed-up

• MIN will never select that MAX node
▪ When evaluating a MIN node: a value 𝑣𝑣 ≤ 𝛼𝛼 is found

• MAX will never select that MIN node

Alpha-Beta Pruning

CIS 521 | 5

For α think “at least”

For β think “at most”

CIS 550 | Property of Penn Engineering | 72

Alpha-Beta Pruning Example
α=-∞
β =+∞

-∞

CIS 550 | Property of Penn Engineering | 73

Alpha-Beta Pruning Example
-∞

+∞α=-∞
β =+∞

α=-∞
β =+∞

CIS 550 | Property of Penn Engineering | 74

Alpha-Beta Pruning Example
-∞

3

3α=-∞
β =3

α=-∞
β =+∞

CIS 550 | Property of Penn Engineering | 75

Alpha-Beta Pruning Example
-∞

123

3α=-∞
β =3

α=-∞
β =+∞

CIS 550 | Property of Penn Engineering | 76

Alpha-Beta Pruning Example
-∞

12 83

3α=-∞
β =3

α=-∞
β =+∞

CIS 550 | Property of Penn Engineering | 77

Alpha-Beta Pruning Example
-∞

12 83

3α=3
β =3

α=-∞
β =+∞

CIS 550 | Property of Penn Engineering | 78

Alpha-Beta Pruning Example
-∞

12 83

3α=3
β =3

α=3
β =+∞

CIS 550 | Property of Penn Engineering | 79

Alpha-Beta Pruning Example
3

12 83

3α=3
β =3

α=3
β =+∞

+∞α=-∞
β =+∞

CIS 550 | Property of Penn Engineering | 80

α=-∞
β =+∞

Alpha-Beta Pruning Example

8 123

3

3

+∞
α=3
β =3

α=3
β =+∞

CIS 550 | Property of Penn Engineering | 81

α=-∞
β =+∞

Alpha-Beta Pruning Example

8 123

3

3

+∞

2

α=3
β =3

α=3
β =+∞

CIS 550 | Property of Penn Engineering | 82

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞

CIS 550 | Property of Penn Engineering | 83

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞Value for β is 2

But we know that this
node is worth at least 3

So Max will never
choose 2.

CIS 550 | Property of Penn Engineering | 84

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞

CIS 550 | Property of Penn Engineering | 85

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞

+∞
α=-∞
β =+∞

CIS 550 | Property of Penn Engineering | 86

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞

14

14

α=-∞
β =14

CIS 550 | Property of Penn Engineering | 87

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =14

14

14

α=-∞
β =14

CIS 550 | Property of Penn Engineering | 88

α=-∞
β =5

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =14

5

514

CIS 550 | Property of Penn Engineering | 89

α=-∞
β =5

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =5

5

514

CIS 550 | Property of Penn Engineering | 90

α=-∞
β =2

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =5

2

5 214

CIS 550 | Property of Penn Engineering | 91

α=2
β =2

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =3

2

5 214

CIS 550 | Property of Penn Engineering | 92

α=2
β =2

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =3

2

5 214

CIS 550 | Property of Penn Engineering | 93

Alpha-Beta Pruning

8 123

3

3

X X2

2 2

5 214

α=3
β =3

α: MAX’s current lower bound on MAX’s outcome
β: MIN’s current upper bound on MIN’s outcome

α: MAX’s best option on path to root
β: MIN’s best option on path to root

α=3
β =3

α=-∞
β =2

α=2
β =2

CIS 550 | Property of Penn Engineering | 94

o Evaluates how good a ‘board position’ is

▪ Based on static features of that board alone

o Zero-sum assumption lets us use one function to describe goodness for both
players.

▪ 𝒇𝒇 𝒏𝒏 > 𝟎𝟎 if MAX is winning in position n

▪ 𝒇𝒇 𝒏𝒏 = 𝟎𝟎 if position n is tied

▪ 𝒇𝒇 𝒏𝒏 < 𝟎𝟎 if MIN is winning in position n

o Build using expert knowledge,
▪ Tic-tac-toe: 𝒇𝒇 𝒏𝒏 = # of 3 lengths open for MAX − # open for MIN

(AIMA 5..1)

Review: Evaluation functions

CIS 521 | 7

CIS 550 | Property of Penn Engineering | 95

o Chess needs an evaluation function since it is
impossible to search the game tree deeply enough to
reach the terminal nodes

o 𝑓𝑓 𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐴𝐴′𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −
(𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐵𝐵′𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

o More complex: weighted sum
of positional features:

∑𝑤𝑤𝑖𝑖 ⋅ feature𝑖𝑖 𝑛𝑛

o 𝑓𝑓(𝑛𝑛) can be a weighted linear function

Review: Chess Evaluation Functions

CIS 521 | 8

Pieces values for a
simple evaluation

function often
taught to novice

chess players

Pawn 1.0
Knight 3.0
Bishop 3.25
Rook 5.0
Queen 9.0

CIS 521:
ARTIFICIAL INTELLIGENCE

Harry Smith

Expectimax
and Utilities

Many of today’s slides are courtesy of Dan Klein and
Pieter Abbeel of University of California, Berkeley

CIS 550 | Property of Penn Engineering | 97

Uncertain Outcomes

CIS 521 | 9

CIS 550 | Property of Penn Engineering | 98CIS 521 | 10

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

chance

CIS 550 | Property of Penn Engineering | 99

Expectimax Search
o Why wouldn’t we know what the result of an action will be?

▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the opponent isn’t optimal
▪ Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under optimal
play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is

uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

o Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

CIS 521 | 11

10 4 5 7

max

chance

10 10 9 100

CIS 550 | Property of Penn Engineering | 100

Expectimax Pseudocode

CIS 521 | 12

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

CIS 550 | Property of Penn Engineering | 101

Expectimax Pseudocode

CIS 521 | 13

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v
8 24 -12

1/2
1/3

1/6

𝑣𝑣 = 1
2
⋅ (8) + 1

3
⋅ (24)+ 1

6
⋅ (−12)

CIS 550 | Property of Penn Engineering | 102CIS 521 | 14

12 9 6 03 2 154 6

CIS 550 | Property of Penn Engineering | 103CIS 521 | 15

12 93 2

CIS 550 | Property of Penn Engineering | 104CIS 521 | 16

…

…492 362

400 300

Estimate of true expectimax value (which would
require a lot of work to compute)

CIS 550 | Property of Penn Engineering | 105

Probabilities

CIS 521 | 17

CIS 550 | Property of Penn Engineering | 106

Probabilities
o A random variable represents an event whose outcome is unknown
o A probability distribution is an assignment of weights to outcomes

o Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: 𝑃𝑃 𝑇𝑇 = none = 0.25, 𝑃𝑃 𝑇𝑇 = light = 0.50, 𝑃𝑃 𝑇𝑇 = heavy = 0.25

o Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

o As we get more evidence, probabilities may change:
▪ 𝑃𝑃 𝑇𝑇 = heavy = 0.25, 𝑃𝑃 𝑇𝑇 = heavy | Hour = 8am = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

CIS 521 | 18

0.25

0.50

0.25

CIS 550 | Property of Penn Engineering | 107

Probabilities
o The expected value of a function of a random variable is the average, weighted by

the probability distribution over outcomes
o Example: How long to get to the airport?

CIS 521 | 19

0.25 0.50 0.25Probability:

20
min

30
min

60
min

Time:
35

minx x x+ +

CIS 550 | Property of Penn Engineering | 108

What Probabilities to Use?

o In expectimax search, we have a probabilistic model of how the
opponent (or environment) will behave in any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of

computation
▪ We have a chance node for any outcome out of our control:

opponent or environment
▪ The model might say that adversarial actions are likely!

o For now, assume each chance node magically comes along with
probabilities that specify the distribution over its outcomes

CIS 521 | 20

Having a probabilistic
belief about another

agent’s action does not
mean that the agent is

flipping any coins!

CIS 550 | Property of Penn Engineering | 109

o Objectivist / frequentist answer:
▪ Averages over repeated experiments
▪ E.g. empirically estimating P(rain) from historical observation
▪ Assertion about how future experiments will go (in the limit)
▪ New evidence changes the reference class
▪ Makes one think of inherently random events, like rolling dice

o Subjectivist / Bayesian answer:
▪ Degrees of belief about unobserved variables
▪ E.g. an agent’s belief that it’s raining, given the temperature
▪ E.g. agent’s belief how an opponent will behave, given the state
▪ Often learn probabilities from past experiences (more later)
▪ New evidence updates beliefs (more later)

CIS 521 | 21

CIS 550 | Property of Penn Engineering | 110

Quiz: Informed Probabilities
o Let’s say you know that your opponent is actually running a depth 2 minimax, using

the result 80% of the time, and moving randomly otherwise
o Question: What tree search should you use?

CIS 521 | 22

0.1
0.9

 Answer: Expectimax!
 To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent
 This kind of thing gets very slow very quickly
 Even worse if you have to simulate your

opponent simulating you…
 … except for minimax, which has the nice

property that it all collapses into one game tree

CIS 550 | Property of Penn Engineering | 111

o Dice rolls increase b: 21 possible rolls with 2 dice
▪ Backgammon ≈ 20 legal moves
▪ Depth 2  20 × 21 × 20 3 = 1.2 × 109

o As depth increases, probability of reaching a given search node
shrinks
▪ So usefulness of search is diminished
▪ So limiting depth is less damaging
▪ But pruning is trickier…

o Historic AI: TDGammon uses depth-2 search + very good evaluation
fuanction + reinforcement learning  world-champion level play

o 1st AI world champion in any game!

CIS 521 | 23

CIS 550 | Property of Penn Engineering | 112

o E.g. Backgammon
o Expectiminimax

▪ Environment is an extra “random
agent” player that moves after each
min/max agent

▪ Each node computes the appropriate
combination of its children

CIS 521 | 24

Max nodes

Chance nodes

Min nodes

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112

