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o Part 1: Games as Search

▪ Motivation

▪ Game-playing AI successes

▪ Game Trees

▪ Evaluation Functions

o Part II: Adversarial Search

▪ The Minimax Rule

▪ Alpha-Beta Pruning

Games: Outline of Unit
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oRatings of human and computer chess champions

https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/
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o Multiagent

o Static: No change while an agent is deliberating.

o Discrete: A finite set of percepts and actions.

o Fully observable: An agent's sensors give it the complete state of the environment.

o Strategic: The next state is determined by the current state and the action executed 

by the agent and the actions of one other agent.

The Simplest Game Environment

CIS 421/521 |

“Strategic” is another way of saying 
deterministic in the context of a 

multiagent game

There’s tension between “fully 
observable” and “multiagent.” Why?
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1. Two players alternate moves
2. Zero-sum: one player’s loss is another’s gain
3. Clear set of legal moves
4. Well-defined outcomes (e.g. win, lose, draw)

o Examples:
▪ Chess, Checkers, Go,
▪ Mancala, Tic-Tac-Toe, Othello …

Key properties of our games

CIS 421/521 | 
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o Most card games (e.g. Hearts, Bridge, etc.) and Scrabble
▪ Stochastic, not deterministic
▪ Not fully observable: lacking in perfect information

o Real-time strategy games
▪ Continuous rather than discrete
▪ No pause between actions, don’t take turns

o Cooperative games

More complicated games

CIS 421/521 | 
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https://youtu.be/-CbyAk3Sn9I

Pac-Man

https://youtu.be/-CbyAk3Sn9I
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1. Two players: MAX and MIN; MAX moves first.
2. MAX and MIN take turns until the game is over.
3. Winner gets award, loser gets penalty.

o Games as search:
▪ Initial state: e.g. board configuration of chess
▪ Successor function: list of (move,state) pairs specifying legal moves.
▪ Terminal test: Is the game finished?
▪ Utility function: Gives numerical value of terminal states.

e.g. win (+∞), lose (-∞) and draw (0)
▪ MAX uses search tree to determine next move.

Formalizing the Game setup

CIS 421/521 | 
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o General Scheme (from one player’s perspective!)
1. Consider all legal successors to the current state (‘board position’)
2. Evaluate each successor board position
3. Pick the move which leads to the best board position.
4. After your opponent moves, repeat.

o Design issues
1. Representing the ‘board’
2. Representing legal next boards
3. Evaluating positions
4. Looking ahead

How to Play a Game by Searching

CIS 421/521 | 

Do any of these pose new 
challenges compared to what we’ve 

seen before?
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o Hexapawn is played on a 3x3 chessboard

o Only standard pawn moves:
1. A pawn moves forward one square onto an empty square
2. A pawn “captures” an opponent pawn by moving diagonally forward one 

square, if that square contains an opposing pawn. The opposing pawn is 
removed from the board.

Hexapawn: A very simple Game

CIS 421/521 | 
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o Hexapawn is played on a 3x3 chessboard

o Player P1 wins the game against P2 when:
▪ One of P1’s pawns reaches the far side of the board, or
▪ P2 cannot move because no legal move is possible.
▪ P2 has no pawns left.
(Invented by Martin Gardner in 1962, with learning “program” using match boxes.)

Hexapawn: A very simple Game

CIS 421/521 | 
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o Hexapawn: Three Possible First Moves

White moves

⬤ ⬤ ⬤

⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤
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o Represent the game problem space by a tree:
▪ Nodes represent ‘board positions’; edges represent legal moves.
▪ Root node is the first position in which a decision must be made.

Game Trees

CIS 421/521 | 
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o Hexapawn: Simplified Game Tree for 2 Moves
White to move

Black to move

White
to move

⬤ ⬤ ⬤

⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤

⬤ ⬤⬤ ⬤⬤ ⬤ ⬤

⬤
⬤ ⬤

⬤
⬤ ⬤

⬤
⬤ ⬤ ⬤

⬤

⬤⬤ ⬤
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o Adversarial Search
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o Battle of Wits

https://www.youtube.com/watch?v=rMz7JBRbmNo

https://www.youtube.com/watch?v=rMz7JBRbmNo
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o Two players: MAX, MAX’s opponent MIN
o All play is computed from MAX’s vantage point.
o When MAX moves, MAX attempts to MAXimize MAX’s outcome.
o When MAX’s opponent moves, they attempt to MINimize MAX’s outcome.

o WE TYPICALLY ASSUME MAX MOVES FIRST:

o Label the root (level 0) MAX
o Alternate MAX/MIN labels at each successive tree level (ply).
o Even levels represent turns for MAX
o Odd levels represent turns for MIN

MAX & MIN Nodes : An egocentric view

CIS 421/521 | 

Each player’s move is a ply, so after 
two plies, MAX plays again.
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o Represent the game problem space by a tree:
▪ Nodes represent ‘board positions’; edges represent legal moves.
▪ Root node is the first position in which a decision must be made.

o Evaluation function f assigns real-number scores 
to `board positions’ without reference to path

o Terminal nodes represent ways the game could end, labeled with the 
desirability of that ending (e.g. win/lose/draw or a numerical score)

Game Trees

CIS 421/521 | 

Games are (usually) concerned with 
the destination rather than the 

journey.
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o Evaluates how good a ‘board position’ is
o Based on static features of that board alone
o Zero-sum assumption lets us use one function to describe goodness for 

both players.
▪ f(n)>0 if MAX is winning in position n

▪ f(n)=0 if position n is tied

▪ f(n)<0 if MIN is winning in position n
o Build using expert knowledge,

▪ Tic-tac-toe: f(n)=(# of 3 lengths open for MAX)- (# open for MIN)

Evaluation functions: f(n)

CIS 421/521 | 

Evaluation function at a terminal 
state is usually defined separately 
(e.g. positive inf, zero, negative inf)
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o f(n)=# of potential three-lines for X –
o # of potential three-line for O

o f(n)=0 if n is a terminal tie
o f(n)=+ ∞ if n is a terminal win
o f(n)=- ∞ if n is a terminal loss

A Partial Game Tree for Tic-Tac-Toe

f(n)=# of potential three-lines for X –
# of potential three-line for O

f(n)=0 if n is a terminal tie​
f(n)=+ ∞ if n is a terminal win​
f(n)=- ∞ if n is a terminal loss​

f(n)=2f(n)=8-5=3 f(n)=3 f(n)=2 f(n)=4 f(n)=2 f(n)=3 f(n)=2 f(n)=3

f(n)=6-5=1 f(n)=0 f(n)=1

f(n)=6-3=3 f(n)=6-4=2 f(n)=6-2=4

-∞ 0 + ∞
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o Claude Shannon argued for a chess evaluation function in a 1950 paper

o Alan Turing defined function in 1948:
f(n)=(sum of A’s piece values)

-(sum of B’s piece values)

o More complex: weighted sum
of positional features:

Σ wi featurei(n)

o Deep Blue had >8000 features

Chess Evaluation Functions

CIS 421/521 | 

Pawn​ 1.0​

Knight​ 3.0​
Bishop​ 3.25​
Rook​ 5.0​
Queen​ 9.0​

Pieces values for a simple Turing-
style evaluation function often taught
to novice chess players

Positive: rooks on open files, knights in​
closed positions, control of the center,

developed pieces​

Negative: doubled pawns, wrong-colored
bishops in closed positions, isolated pawns, pinned pieces​

Examples of more complex features
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Some Chess Positions and their Evaluations

CIS 421/521 | 

White to move​
f(n)=(9+3)-(5+5+3.25)​

=-1.25

… Nxg5??​
f(n)=(9+3)-(5+5)​

=2

Uh-oh: Rxg4+​
f(n)=(3)-(5+5)​

=-7
And black may
force checkmateSo, considering our opponent’s possible​

responses would be wise.​
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The Minimax Rule (AIMA 5.2)

CIS 421/521 | 
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o Idea: Make the best move for MAX assuming that MIN always replies with the best 
move for MIN

o Easily computed by a recursive process
• The backed-up value of each node in the tree is determined by the values of its 

children:

• For a MAX node, the backed-up value is the maximum of the values of its 
children (i.e. the best for MAX)

• For a MIN node, the backed-up value is the minimum of the values of its 
children (i.e. the best for MIN)

The Minimax Rule: “Don’t play hope chess”

CIS 421/521 | 
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o Until game is over:

1. Start with the current position as a MAX node.

2. Expand the game tree a fixed number of ply.

3. Apply the evaluation function to the leaf positions.

4. Calculate back-up values bottom-up.

5. Pick the move assigned to MAX at the root

6. Wait for MIN to respond

The Minimax Procedure

CIS 421/521 | 
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o Minimax search:

▪ A state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value: the best 
achievable utility against a rational (optimal) 
adversary

Adversarial Search (Minimax)

CIS 521  |  2

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively
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Minimax Implementation

CIS 521  |  3

def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v
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o Definition of optimal play for MAX assumes MIN plays optimally:
▪ Maximizes worst-case outcome for MAX.
▪ (Classic game theoretic strategy)

o But if MIN does not play optimally, MAX will do even better.
▪ This theorem is not hard to prove

What if MIN does not play optimally?

CIS 421/521 | 
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

-∞
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 +∞

14
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 14

14
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 14

514
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2

514

5
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 5

5 214
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214
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def max-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Example

def min-value(state):
if the state is a terminal state:

return the state’s utility
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

8 123

3

3

4 62

2 2

5 214
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o During Minimax, keep track of two additional values:
▪ α: MAX’s current lower bound on MAX’s outcome 
▪ β: MIN’s current upper bound on MIN’s outcome

o MAX will never allow a move that could lead to a worse score (for MAX) than α
o MIN will never allow a move that could lead to a better score (for MAX) than β

o Therefore, stop evaluating a branch whenever:
▪ When evaluating a MAX node: a value 𝑣𝑣 ≥ 𝛽𝛽 is backed-up

• MIN will never select that MAX node
▪ When evaluating a MIN node: a value 𝑣𝑣 ≤ 𝛼𝛼 is found

• MAX will never select that MIN node

Alpha-Beta Pruning

CIS 521  |  5

For α think “at least”

For β think “at most”
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Alpha-Beta Pruning Example
α=-∞
β =+∞

-∞
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Alpha-Beta Pruning Example
-∞

+∞α=-∞
β =+∞

α=-∞
β =+∞
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Alpha-Beta Pruning Example
-∞

3

3α=-∞
β =3

α=-∞
β =+∞
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Alpha-Beta Pruning Example
-∞

123

3α=-∞
β =3

α=-∞
β =+∞
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Alpha-Beta Pruning Example
-∞

12 83

3α=-∞
β =3

α=-∞
β =+∞
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Alpha-Beta Pruning Example
-∞

12 83

3α=3
β =3

α=-∞
β =+∞
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Alpha-Beta Pruning Example
-∞

12 83

3α=3
β =3

α=3
β =+∞
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Alpha-Beta Pruning Example
3

12 83

3α=3
β =3

α=3
β =+∞

+∞α=-∞
β =+∞
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α=-∞
β =+∞

Alpha-Beta Pruning Example

8 123

3

3

+∞
α=3
β =3

α=3
β =+∞
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α=-∞
β =+∞

Alpha-Beta Pruning Example

8 123

3

3

+∞

2

α=3
β =3

α=3
β =+∞
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α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞
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α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞Value for β is 2

But we know that this 
node is worth at least 3

So Max will never 
choose 2.
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α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞
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α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞

+∞
α=-∞
β =+∞
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α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =+∞

14

14

α=-∞
β =14
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α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =14

14

14

α=-∞
β =14



CIS 550   |   Property of Penn Engineering   |   88

α=-∞
β =5

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =14

5

514
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α=-∞
β =5

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =5

5

514
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α=-∞
β =2

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =5

2

5 214



CIS 550   |   Property of Penn Engineering   |   91

α=2
β =2

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =3

2

5 214
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α=2
β =2

α=-∞
β =2

Alpha-Beta Pruning Example

8 123

3

3

2

2

α=3
β =3

α=3
β =3

2

5 214
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Alpha-Beta Pruning

8 123

3

3

X X2

2 2

5 214

α=3
β =3

α: MAX’s current lower bound on MAX’s outcome 
β: MIN’s current upper bound on MIN’s outcome

α: MAX’s best option on path to root
β: MIN’s best option on path to root

α=3
β =3

α=-∞
β =2

α=2
β =2
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o Evaluates how good a ‘board position’ is

▪ Based on static features of that board alone

o Zero-sum assumption lets us use one function to describe goodness for both 
players.

▪ 𝒇𝒇 𝒏𝒏 > 𝟎𝟎 if MAX is winning in position n

▪ 𝒇𝒇 𝒏𝒏 = 𝟎𝟎 if position n is tied

▪ 𝒇𝒇 𝒏𝒏 < 𝟎𝟎 if MIN is winning in position n

o Build using expert knowledge, 
▪ Tic-tac-toe: 𝒇𝒇 𝒏𝒏 = # of 3 lengths open for MAX − # open for MIN

(AIMA 5..1)

Review: Evaluation functions

CIS 521  |  7
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o Chess needs an evaluation function since it is 
impossible to search the game tree deeply enough to 
reach the terminal nodes

o 𝑓𝑓 𝑛𝑛 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐴𝐴′𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −
(𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐵𝐵′𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

o More complex: weighted sum 
of positional features: 

∑𝑤𝑤𝑖𝑖 ⋅ feature𝑖𝑖 𝑛𝑛

o 𝑓𝑓(𝑛𝑛) can be a weighted linear function

Review: Chess Evaluation Functions

CIS 521  |  8

Pieces values for a 
simple evaluation  

function often 
taught to novice 

chess players

Pawn 1.0
Knight 3.0
Bishop 3.25
Rook 5.0
Queen 9.0
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Uncertain Outcomes

CIS 521  |  9
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10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

chance
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Expectimax Search
o Why wouldn’t we know what the result of an action will be?

▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the opponent isn’t optimal
▪ Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

o Expectimax search: compute the average score under optimal 
play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is 

uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

o Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

CIS 521  |  11

10 4 5 7

max

chance

10 10 9 100



CIS 550   |   Property of Penn Engineering   |   100

Expectimax Pseudocode

CIS 521  |  12

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor) 
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v
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Expectimax Pseudocode

CIS 521  |  13

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor) 
v += p * value(successor)

return v
8 24 -12

1/2
1/3

1/6

𝑣𝑣 = 1
2
⋅ (8) + 1

3
⋅ (24)+ 1

6
⋅ (−12)
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12 9 6 03 2 154 6
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12 93 2
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…

…492 362

400 300

Estimate of true expectimax value (which would 
require a lot of work to compute)
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Probabilities

CIS 521  |  17
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Probabilities
o A random variable represents an event whose outcome is unknown
o A probability distribution is an assignment of weights to outcomes

o Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: 𝑃𝑃 𝑇𝑇 = none = 0.25, 𝑃𝑃 𝑇𝑇 = light = 0.50, 𝑃𝑃 𝑇𝑇 = heavy = 0.25

o Some laws of probability (more later):
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

o As we get more evidence, probabilities may change:
▪ 𝑃𝑃 𝑇𝑇 = heavy = 0.25, 𝑃𝑃 𝑇𝑇 = heavy | Hour = 8am = 0.60
▪ We’ll talk about methods for reasoning and updating probabilities later

CIS 521  |  18

0.25

0.50

0.25
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Probabilities
o The expected value of a function of a random variable is the average, weighted by 

the probability distribution over outcomes
o Example: How long to get to the airport?

CIS 521  |  19

0.25 0.50 0.25Probability:

20 
min

30 
min

60 
min

Time:
35 

minx x x+ +
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What Probabilities to Use?

o In expectimax search, we have a probabilistic model of how the 
opponent (or environment) will behave in any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of 

computation
▪ We have a chance node for any outcome out of our control: 

opponent or environment
▪ The model might say that adversarial actions are likely!

o For now, assume each chance node magically comes along with 
probabilities that specify the distribution over its outcomes

CIS 521  |  20

Having a probabilistic 
belief about another 

agent’s action does not 
mean that the agent is 

flipping any coins!
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o Objectivist / frequentist answer:
▪ Averages over repeated experiments
▪ E.g. empirically estimating P(rain) from historical observation
▪ Assertion about how future experiments will go (in the limit)
▪ New evidence changes the reference class
▪ Makes one think of inherently random events, like rolling dice

o Subjectivist / Bayesian answer:
▪ Degrees of belief about unobserved variables
▪ E.g. an agent’s belief that it’s raining, given the temperature
▪ E.g. agent’s belief how an opponent will behave, given the state
▪ Often learn probabilities from past experiences (more later)
▪ New evidence updates beliefs (more later)

CIS 521  |  21
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Quiz: Informed Probabilities
o Let’s say you know that your opponent is actually running a depth 2 minimax, using 

the result 80% of the time, and moving randomly otherwise
o Question: What tree search should you use?  

CIS 521  |  22

0.1          
0.9

 Answer: Expectimax!
 To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent
 This kind of thing gets very slow very quickly
 Even worse if you have to simulate your 

opponent simulating you…
 … except for minimax, which has the nice 

property that it all collapses into one game tree
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o Dice rolls increase b: 21 possible rolls with 2 dice
▪ Backgammon ≈ 20 legal moves
▪ Depth 2  20 × 21 × 20 3 = 1.2 × 109

o As depth increases, probability of reaching a given search node 
shrinks
▪ So usefulness of search is diminished
▪ So limiting depth is less damaging
▪ But pruning is trickier…

o Historic AI: TDGammon uses depth-2 search + very good evaluation 
fuanction + reinforcement learning  world-champion level play

o 1st AI world champion in any game!

CIS 521  |  23
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o E.g. Backgammon
o Expectiminimax

▪ Environment is an extra “random 
agent” player that moves after each 
min/max agent

▪ Each node computes the appropriate 
combination of its children

CIS 521  |  24

Max nodes

Chance nodes

Min nodes
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