
CIS 521:  
ARTIFICIAL INTELLIGENCE 

Harry Smith

Introduction 
to Python

Last extensive revision: Previous revisions:
Jie Gao, Fall 2019 Daniel Moroz, Fall 2015



CIS 421/521:
ARTIFICIAL INTELLIGENCE

Harry Smith

Welcome to
the Course!



CIS 550 | Property of Penn Engineering |   2CIS 421/521 |2

• I’m Harry Smith

▪ Office hours TBD

▪ Preferred method of contact: Piazza

▪ Email: sharry@seas.upenn.edu

Welcome to CIS
421/521

• I’m a Lecturer in the CIS department
• Personal Interests: CS Education, Data Viz, Creative 

Computing



CIS 550 | Property of PeCnnISE4ng2in1e/e5r2in1g || 3

Course
staff

Instructor: Harry Smith

TA: Ayush Parikh
OH: TBD
Contact: Piazza!

TA: Grace Jiang
OH: TBD
Contact: Piazza!



CIS 550  |  Property of PeCInnSE4ng2in1e/e5r2in1g || 4

Gather Town https://gather.town/aQMGI0l1R8DP0Ovv/penn-cis

Come find me in my 
Office, 269C

Over here is where we’ll 
probably do Office Hours



CIS 550 | Property of Penn Engineering |   5CIS 421/521 |5

o Course web page: https://sharry29.github.io/21su/

▪ Lecture slides on web page

▪ Homeworks on web page

o Discussion on Piazza (link on course home page)

o Homework submission via Gradescope

o Lectures will be recorded using the Panopto system

▪ Video recordings will be posted after lecture

o Prerequisites:

▪ Good knowledge of programming, data structures

▪ Enough programming experience to master Python after two introductory lectures.

▪ Introductory probability and statistics, and linear algebra will be very useful

Welcome to CIS
421/521



CIS 421/521 |   Property of Penn Engineering |  6

Stuart Russell and Peter Norvig Artificial 
Intelligence: A Modern Approach Pearson 
Series in Artificial Intelligence, 2020, Fourth 
Edition
The textbook is 1000 pages long and covers 
core ideas that were developed as early as 
the 1950s.
This is a brand-new edition of the classic 
textbook which adds sections on deep 
learning, natural language processing, 
causality, and fairness in AI.
You can rent a digital copy from the Penn 
bookstore for $40.

Course
Textbook



CIS 550 | Property of Penn Engineering |   7CIS 421/521 |7

o Grading:
▪ 70% for homework assignments
▪ 30% for exams and quizzes

o Homework:
▪ There is roughly one homework assignment per week. Students enrolled in CIS 421 may 

discard their lowest scoring HW assignment provided that all assignment scores are above 
50%. You do not get late days back on the homework that you discard. Students enrolled in 
CIS 521 must complete all HW assignments and cannot discard their lowest scoring 
assignment.

▪ Each student has 8 free “late days”. Homeworks can be submitted at most two days late. If 
you are out of late days, then you will not be able to get credit for subsequent late 
assignments. One “day” is defined as anytime between 1 second and 24 hours after the 
homework deadline. Nearly any time that you ask me for an extension, I will tell you to use 
your late days, and there are absolutely no exceptions granted after the fact.

Grading and
Homework



CIS 550 | Property of Penn Engineering |   8CISC4IS251X/5X21| |28

Collaboration
Policy
You can elect before each homework assignment whether 

you’d like to work alone or in a small group. For each 

assignment, you’ll be randomly matched into a group. You can 

discuss homework problems with others (you must explicitly list 

who you discussed problems with on each homework 

submission), but all code must be your own independent work, 

or must have been generated in a pair-coding context. You are 

not allowed to upload your code to publicly accessible places 

(like public github repositories), and you are not allowed to 

access code from anyone outside of your current group. If you 

discover someone else’s code online, please report it to the 

course staff via a private note on Piazza.



CIS 550 | Property of Penn Engineering |   9CIS 421/521 |9

There are many courses at Penn related to Artificial Intelligence:

o CIS 419/519 – Applied Machine Learning

o CIS 520 – Machine Learning
o CIS 522 – Deep Learning

o CIS 530 – Computational Linguistics
o CIS 580 – Machine Perception

o MEAM 420/520 – Introduction to Robotics

CIS 421/521 overs a broad overview of AI so parts of it will overlap with other courses.

CIS 421/521 compared to 
other Penn courses



CIS 550   |   Property of Penn Engineering   |   11

o Baby steps
▪ History, Python environments, Docs

o Absolute Fundamentals
▪ Objects, Types
▪ Math and Strings basics
▪ References and Mutability

o Data Types
▪ Strings, Tuples, Lists, Dictionaries 

o Looping
▪ Comprehensions

o Iterators
▪ Generators

o To Be Continued…

Plan Day 1

CIS 521 | 2



CIS 550   |   Property of Penn Engineering   |   12

o Developed by Guido van Rossum in the early 90s
▪ Originally Dutch, in USA since 1995.
▪ Benevolent Dictator for Life (now retired)

o Available on Eniac; download at python.org
▪ Consider Python Wrangler for best Python 

installation practices.
o Named after the Monty Python comedy group

Python

CIS 521 | 3

http://littlecolumns.com/tools/python-wrangler/


CIS 550   |   Property of Penn Engineering   |   13

o Fast development:
▪ Concise, intuitive syntax

• Whitespace delimited
▪ Garbage collected

o Portable:
▪ Programs run on major platforms without 

change
▪ cpython: common Python implementation in C.

o Various built-in types:
▪ lists, dictionaries, sets: useful for AI

o Large collection of support libraries:
▪ NumPy for Matlab like programming
▪ Sklearn for machine learning
▪ Pandas for data analysis

Some Positive Features of Python

CIS 521 | 4



CIS 550   |   Property of Penn Engineering   |   14

o Python Overview
▪ The Official Python Tutorial (https://docs.python.org/3/tutorial/index.html)
▪ Slides for CIS192, Spring 2021

(https://www.cis.upenn.edu/~cis192/)
o PEPs – Python Enhancement Proposals

▪ PEP 8 - Official Style Guide for Python Code (Guido et al)
• Style is about consistency. 4 space indents, < 80 char lines
• Naming convention for functions and variables: lower_w_under
• Use the automatic pep8 checker!

o PEP 20 – The Zen of Python (Tim Peters) (try: import this)
▪ Beautiful is better than ugly; simple is better than complex
▪ There should be one obvious way to do it
▪ That way may not be obvious at first unless you're Dutch
▪ Readability counts

Recommended Reading

CIS 521 | 5

https://docs.python.org/3/tutorial/index.html
https://www.cis.upenn.edu/%7Ecis192/
http://pep8.org/


CIS 550   |   Property of Penn Engineering   |   16

o REPL
▪ Read-Evaluate-Print Loop
▪ Type “python” at the terminal
▪ Convenient for testing
▪ If you’d like syntax highlighting in REPL try bpython

Python REPL Environment

CIS 521 | 7

Remember, make 
sure this is Python 

>= 3.6.5

https://bpython-interpreter.org/


CIS 550   |   Property of Penn Engineering   |   17

o Scripts
▪ Create a file with your favorite text editor (like Sublime)
▪ Type “python script_name.py” at the terminal to run
▪ Not REPL, so you need to explicitly print
▪ Homework submitted as scripts

Python Scripts

CIS 521 | 8



CIS 550   |   Property of Penn Engineering   |   18

o You may already have untold numbers of Python 
versions living on your computer
▪ Makes it hard to know what happens when you 

write “python file_name.py”
o Python Wrangler is a handy little tool to help you 

manage some of these extra Pythons lying around
▪ Guides you to remove old versions
▪ Walks you through installing Python alone
▪ Also has steps for installing pyenv, pipenv, and 

jupyter. 

An aside about Python versions

http://littlecolumns.com/tools/python-wrangler/


CIS 550   |   Property of Penn Engineering   |   19

oPyCharm IDE

CIS 521 | 9



CIS 550   |   Property of Penn Engineering   |   20

o Jupyter Notebooks allow you to interactively run Python code in your 
web browser and share it with others in places like Google Colab

o They are popular for tutorials since you can include inline text and 
images

Python Notebooks

CIS 521 | 10



CIS 550   |   Property of Penn Engineering   |   21

o Whitespace is meaningful in Python
o Use a newline to end a line of code.

▪ Use \ when must go to next line prematurely.
o Block structure is indicated by indentation

▪ The first line with less indentation is outside of the block.
▪ The first line with more indentation starts a nested block.
▪ Often a colon appears at the end of the line of a start of a new block. (E.g. for 

function and class definitions.)

Structure of Python File

CIS 521 | 11

But also… just 
don’t do this.



CIS 550   |   Property of Penn Engineering   |   22

oA Simple Code Sample

CIS 521 | 16



CIS 550   |   Property of Penn Engineering   |   23

o All data treated as objects
▪ An object is deleted (by garbage collection) once unreachable.

o Strong Typing
▪ Every object has a fixed type, interpreter doesn’t allow things incompatible with 

that type (eg. “foo” + 2)
▪ type(object)
▪ isinstance(object, type)

o Examples of Types:
▪ int, float
▪ str, tuple, dict, list
▪ bool: True, False
▪ None, generator, function

Objects and Types

CIS 521 | 12

Can you think of a 
language that 

uses Weak Typing?



CIS 550   |   Property of Penn Engineering   |   24

o Java: static typing
▪ Variables can only refer to objects of a declared type
▪ Methods use type signatures to enforce contracts

o Python: dynamic typing
▪ Variables come into existence when first assigned.

>>> x = "foo”
>>> x = 2

▪ type(var) automatically determined
▪ If assigned again, type(var) is updated
▪ Functions have no type signatures
▪ Drawback: type errors are only caught at runtime

Static vs Dynamic Typing

CIS 521 | 13



CIS 550   |   Property of Penn Engineering   |   25

o Literals
▪ Integers: 1, 2
▪ Floats: 1.0, 2e10
▪ Boolean: True, False

o Operations
▪ Arithmetic: + - * /
▪ Power: **
▪ Modulus: %
▪ Comparison: , <=, >=, ==, !=
▪ Logic: (and, or, not) not symbols

o Assignment Operators
▪ += *= /= &= ...
▪ No ++ or --

Math Basics

CIS 521 | 14



CIS 550   |   Property of Penn Engineering   |   26

o Creation
▪ Can use either single or double quotes
▪ Triple quote for multiline string and docstring

o Concatenating strings
▪ By separating string literals with whitespace
▪ Special use of ‘+’

o Prefixing with r means raw.
▪ No need to escape special characters: r’\n’

o String formatting
▪ There are many ways, but f-strings are easiest
▪ print(f’CIS {course_number} is offered at {course_time}’)

o Immutable

Strings

CIS 521 | 15



CIS 550   |   Property of Penn Engineering   |   27

>>> x = 'foo '
>>> y = x
>>> x = x.strip() # new obj
>>> x
'foo'
>>> y
'foo '
o strings are immutable
o == checks whether variables point to 

objects of the same value
o is checks whether variables point to the 

same object

References and Mutability

CIS 521 | 17

>>> x = [1, 2, 3, 4]
>>> y = x
>>> x.append(5) #in place
>>> y
[1, 2, 3, 4, 5]
>>> x
[1, 2, 3, 4, 5]
o lists are mutable
o use y = x[:] to get a (shallow) copy of 

any sequence, ie. a new object of the 
same value

How does this 
compare to Java?



CIS 550   |   Property of Penn Engineering   |   28

oSequence types: Tuples, Lists, and Strings

CIS 521 | 18



CIS 550   |   Property of Penn Engineering   |   29

o Tuple
▪ A simple immutable ordered sequence of items
▪ Immutable: a tuple cannot be modified once created
▪ Items can be of mixed types, including collection types

o Strings
▪ Immutable
▪ Very much like a tuple of individual characters with different syntax
▪ Regular strings are Unicode and use 2-byte characters (Regular strings in 

Python 2 use 8-bit characters)
o List

▪ Mutable ordered sequence of items of mixed types

Sequence Types

CIS 521 | 19



CIS 550   |   Property of Penn Engineering   |   30

o The three sequence types share much of the same syntax and functionality.

>>> tu = (23, 'abc', 4.56, (2,3), 'def') # tuple

>>> li = ['abc', 34, 4.34, 23] # list

>>> st = "Hello World"; st = 'Hello World' # strings

>>> tu[1] # Accessing second item in the tuple.
'abc'

>>> tu[-3] #negative lookup from right, from -1
4.56

Sequence Types

CIS 521 | 20



CIS 550   |   Property of Penn Engineering   |   31

>>> t = (23, 'abc', 4.56, (2,3), 'def')

>>> t[1:4] #slicing ends before last index
('abc', 4.56, (2,3))

>>> t[1:-1] #using negative index
('abc', 4.56, (2,3))

>>> t[1:-1:2] # selection of every nth item.
('abc', (2,3))

>>> t[:2] # copy from beginning of sequence
(23, 'abc')

>>> t[2:] # copy to the very end of the sequence
(4.56, (2,3), 'def')

Slicing: Return Copy of a Subsequence

CIS 521 | 21



CIS 550   |   Property of Penn Engineering   |   32

>>> li = [1, 11, 3, 4, 5]
>>> li.append('a') # Note the method syntax
>>> li
[1, 11, 3, 4, 5, 'a']
>>> li.insert(2, 'i')
>>> li
[1, 11, 'i', 3, 4, 5, 'a']
>>> li = ['a', 'b', 'c', 'b']
>>> li.index('b') # index of first occurrence
1
>>> li.count('b') # number of occurrences
2
>>> li.remove('b') # remove first occurrence
>>> li

['a', 'c', 'b']

Operations on Lists

CIS 521 | 22



CIS 550   |   Property of Penn Engineering   |   33

>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place* (modify)

>>> li
[8, 6, 2, 5]

>>> li.sort() # sort the list *in place*

>>> li
[2, 5, 6, 8]

>>> li.sort(some_function)
# sort in place using user-defined comparison

>>> sorted(li) #return a *copy* sorted

Operations on Lists 2

CIS 521 | 23

sorted() works on any 
sequence while .sort() 

is specific to lists



CIS 550   |   Property of Penn Engineering   |   34

>>> s = "Pretend this sentence makes sense."
>>> words = s.split(" ")
>>> words
['Pretend', 'this', 'sentence', 'makes', 'sense.']
>>> "_".join(words) #join method of obj "_"
'Pretend_this_sentence_makes_sense.'

>>> s = 'dog'
>>> s.capitalize()
'Dog'
>>> s.upper()
'DOG’
>>> ' hi --'.strip(' –')
'hi’

There’s more: https://docs.python.org/3.9/library/string.html

Operations on Strings

CIS 521 | 24

I cannot overstate 
how useful join is.

https://docs.python.org/3.9/library/string.html


CIS 550   |   Property of Penn Engineering   |   35

>>> a = ["apple", "orange", "banana"]
>>> for (index, fruit) in enumerate(a):
... print(str(index) + ": " + fruit)
...
0: apple
1: orange
2: banana

>>> a = [1, 2, 3]
>>> b = ['a', 'b', 'c', 'd']
>>> list(zip(a, b))
[(1, 'a'), (2, 'b'), (3, 'c')]

>>> list(zip("foo", "bar"))
[('f', 'b'), ('o', 'a'), ('o', 'r')]

>>> x, y, z = 'a', 'b', 'c'

Tuples

CIS 521 | 25

enumerate returns a 
sequence of (index, 

value) tuples from the 
input sequence



CIS 550   |   Property of Penn Engineering   |   36

oDictionaries: a mapping collection type

CIS 521 | 26



CIS 550   |   Property of Penn Engineering   |   37

o Dictionaries are unordered & work by hashing, so keys must be immutable
▪ No lists as keys!

o Constant average time add, lookup, update

>>> d = {'user' : 'bozo', 'pswd': 1234}

>>> d['user']
'bozo'

>>> d['bozo']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'bozo'

>>> d['user'] = 'clown' # Assigning to an existing key replaces its value.

>>> d
{'user': 'clown', 'pswd': 1234}

Dict: Create, Access, Update

CIS 521 | 27



CIS 550   |   Property of Penn Engineering   |   38

>>> d = {'user':'bozo', 'p':1234, 'i':34}
>>> d.keys() # List of current keys
dict_keys(['user', 'p', 'i'])
>>> d.values() # List of current values.
dict_values(['bozo', 1234, 34])
>>> d.items() # List of item tuples.
dict_items([('user', 'bozo'), ('p', 1234), ('i', 34)])

>>> from collections import defaultdict
>>> d = defaultdict(int)
>>> d['a']
0
o defaultdict automatically initializes nonexistent dictionary values

Dict: Useful Methods

CIS 521 | 28

The input to 
defaultdict() is a 

function that initializes 
the default value



CIS 550   |   Property of Penn Engineering   |   39

oFor Loops

CIS 521 | 29



CIS 550   |   Property of Penn Engineering   |   40

o for <item> in <collection>:
<statements>

o If you’ve got an existing list, this iterates each item in it.
o You can generate a sequence with range():

▪ list(range(5)) returns [0,1,2,3,4]
▪ So we can say:

for x in range(5):
print(x)

o <item> can be more complex than a single variable name.
▪ for (x, y) in [('a',1), ('b',2), ('c',3), ('d',4)]:
▪ print(x)

For Loops

CIS 521 | 30



CIS 550   |   Property of Penn Engineering   |   41

nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# I want 'n*n' for each 'n’ in nums
squares = []
for n in nums:

squares.append(x*x)
print(squares)

squares = [x*x for x in nums]
print(squares)

List Comprehensions replace loops!

CIS 521 | 31



CIS 550   |   Property of Penn Engineering   |   42

>>> li = [3, 6, 2, 7]
>>> [elem * 2 for elem in li]
[6, 12, 4, 14]

>>> li = [('a', 1), ('b', 2), ('c', 7)]
>>> [n * 3 for (x, n) in li]
[3, 6, 21]

List Comprehensions replace loops!

CIS 521 | 32

What would these 
have looked like as 

for loops?



CIS 550   |   Property of Penn Engineering   |   43

>>> li = [3, 6, 2, 7, 1, 9]
>>> [elem * 2 for elem in li if elem > 4]
[12, 14, 18]

o Only 6, 7, and 9 satisfy the filter condition.
o So, only 12, 14, and 18 are produced.

Filtered List Comprehensions

CIS 521 | 33



CIS 550   |   Property of Penn Engineering   |   44

lst1, lst2, lst3 = [1, 2, 3], [2, 3, 4], [3, 4, 5]
res = [(x, y, z) for x in lst1 if x < 2

for y in lst2
for z in lst3 if x + y + z < 8]

res = [] # translation
for x in lst1:

if x < 2:
for y in lst2:

for z in lst3:
if x + y + z < 8:

res.append((x, y, z))
# Both value of res: [(1, 2, 3), (1, 2, 4), (1, 3, 3)]

List Comprehension extra for

CIS 521 | 34

Pay attention to the 
order that the loops 

take!



CIS 550   |   Property of Penn Engineering   |   45

lst1 = [('a', 1), ('b', 2), ('c', 'hi')]
lst2 = ['x', 'a', 6]

d = {k: v for k,v in lst1}
s = {x for x in lst2}

d = dict() # translation
for k, v in lst1:

d[k] = v
s = set() # translation
for x in lst2:

s.add(x)

# Both value of d: {'a': 1, 'b': 2, 'c': 'hi’}
# Both value of d: {'x', 'a', 6}

Dictionary, Set Comprehensions

CIS 521 | 35

What about tuple 
comprehensions?



CIS 550   |   Property of Penn Engineering   |   46

Iterators

CIS 521 | 36



CIS 550   |   Property of Penn Engineering   |   47

o Iterable objects can be used in a for loop because they have an __iter__ magic 
method, which converts them to iterator objects:

>>> k = [1,2,3]

>>> k.__iter__()
<list_iterator object at 0x104f8ca50>

>>> iter(k)
<list_iterator object at 0x104f8ca10>

Iterator Objects

CIS 521 | 37



CIS 550   |   Property of Penn Engineering   |   48

o Iterators are objects with a __next__() method:
>>> i = iter(k)
>>> next(i)
1
>>> i.__next__()
2
>>> i.next()
3
>>> i.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration
o Python iterators do not have a hasnext() method!
o Just catch the StopIteration exception

Iterators

CIS 521 | 38



CIS 550   |   Property of Penn Engineering   |   49

o for <item> in <iterable>:
<statements>

o First line is just syntactic sugar for:
▪ 1. Initialize: Call <iterable>.__iter__() to create an iterator

o Each iteration:
▪ 2. Call iterator.__next__() and bind <item>
▪ 2a. Catch StopIteration exceptions

o To be iterable: has __iter__ method
▪ which returns an iterator obj

o To be iterator: has __next__ method
▪ which throws StopIteration when done

Iterators: The truth about for… in…

CIS 521 | 39

One object can be 
both simultaneously.



CIS 550   |   Property of Penn Engineering   |   50

class Reverse:
"Iterator for looping over a sequence backwards"
def __init__(self, data):

self.data = data
self.index = len(data)

def __next__(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

def __iter__(self):
return self

>>> for char in Reverse('spam'):
print(char)

An Iterator Class

CIS 521 | 40



CIS 550   |   Property of Penn Engineering   |   51

Eg: File Objects
>>> for line in open(“script.py”): # returns iterator
... print(line.upper())
...
IMPORT SYS
PRINT(SYS.PATH)
X = 2
PRINT(2 ** 3)

instead of
>>> for line in open(“script.py”).readlines(): #returns list
... print(line.upper())
...

Iterators use memory efficiently

CIS 521 | 41



CIS 550   |   Property of Penn Engineering   |   52

Generators

CIS 521 | 42



CIS 550   |   Property of Penn Engineering   |   53

o Generators are iterators (with __next()__ method)
o Creating Generators: yield

▪ Functions that contain the yield keyword automatically return a generator when 
called

>>> def f(n):
... yield n
... yield n+1
...
>>>
>>> type(f)
<class 'function'>
>>> type(f(5))
<class 'generator'>
>>> [i for i in f(6)]
[6, 7]

Generators: using yield

CIS 521 | 43



CIS 550   |   Property of Penn Engineering   |   54

o Each time we call the __next__ method of the generator, the method runs until it 
encounters a yield statement, and then it stops and returns the value that was 
yielded. Next time, it resumes where it left off.

>>> gen = f(5) # no need to say f(5).__iter__()
>>> gen
<generator object f at 0x1008cc9b0>
>>> gen.__next__()
5
>>> next(gen)
6
>>> gen.__next__()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Generators: What does yield do?

CIS 521 | 44



CIS 550   |   Property of Penn Engineering   |   55

o xrange(n) vs range(n) in Python 2
▪ xrange acts like a generator
▪ range(n) keeps all n values in memory before starting a loop even if n is huge: 

for k in range(n)
▪ sum(xrange(n)) much faster than sum(range(n)) for large n

o In Python 3
▪ xrange(n) is removed
▪ range(n) acts similar to the old xrange(n)
▪ Can use list() to get similar behavior as in Python 2
▪ Python 3’s range is more powerful than Python 2’s xrange

Generators

CIS 521 | 45

http://treyhunner.com/2018/02/python-3-s-range-better-than-python-2-s-xrange/


CIS 550   |   Property of Penn Engineering   |   56

o Benefits of using generators
▪ Less code than writing a standard iterator

• Think of all the underscores you save!
▪ Maintains local state automatically
▪ Values are computed one at a time, as they’re needed
▪ Avoids storing the entire sequence in memory
▪ Good for aggregating (summing, counting) items. One pass.

• Two aggregations requires two separate generator instances!
▪ Crucial for infinite sequences
▪ Bad if you need to inspect the individual values.

Generators

CIS 521 | 46



CIS 550   |   Property of Penn Engineering   |   57

o Problem: merge two sorted lists, using the output as a stream (i.e. not storing 
it).

def merge(l, r):
llen, rlen, i, j = len(l), len(r), 0, 0
while i < llen or j < rlen:

if j == rlen or (i < llen and l[i] < r[j]):
yield l[i]
i += 1

else:
yield r[j]
j += 1

Using generators: merging sequences

CIS 521 | 47



CIS 550   |   Property of Penn Engineering   |   58

>>> g = merge([2,4], [1, 3, 5]) #g is an iterator
>>> while True:
... print(g.__next__())
...
1
2
3
4
5
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

StopIteration
>>> [x for x in merge([1,3,5],[2,4])]
[1, 2, 3, 4, 5]

Using generators

CIS 521 | 48



CIS 550   |   Property of Penn Engineering   |   59

>>> g = merge([2,4], [1, 3, 5])
>>> while True:
... try:
... print(g.__next__())
... except StopIteration:
... print('Done’)
... break
...
1
2
3
4
5
Done

Generators and exceptions

CIS 521 | 49

>>> g = merge([2,4], [1, 3, 5])
>>> for elem in g:
... print(g)
...
1
2
3
4
5

Without exception 
handling



CIS 550   |   Property of Penn Engineering   |   60

o No such thing as a “tuple comprehension”, but that syntax is used for a generator 
expression to define a new generator object.

>>> sum(x for x in range(10**8) if x%5==0)
999999950000000L
which uses a generator expression is much faster than

>>> sum([x for x in range(10**8) if x%5==0])
999999950000000L
which creates the entire list before computing the sum

Generator comprehensions

CIS 521 | 50

No brackets around 
the expression!



CIS 550   |   Property of Penn Engineering   |   61

Imports

CIS 521  |  25



CIS 550   |   Property of Penn Engineering   |   62CIS 521  |  26

>>> import math 
>>> math.sqrt(9) 
3.0

# Not as good to do this:
>>> from math import *
>>> sqrt(9) # unclear where function defined

>>> import queue as Q
>>> q = Q.PriorityQueue()
>>> q.put(10)
>>> q.put(1)
>>> q.put(5)
>>> while not q.empty():

print(q.get())
1, 5, 10

Import Modules and Files

Remember this when 
we implement 

searches!



CIS 550   |   Property of Penn Engineering   |   63CIS 521  |  27

# homework1.py
def concatenate(seqs):

return [seq for seq in seqs] # This is wrong

# run python interactive interpreter (REPL) in directory of homework1.py
>>> import homework1
>>> assert homework1.concatenate([[1, 2], [3, 4]]) == \

[1, 2, 3, 4]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError

>>> import importlib #after fixing homework1
>>> importlib.reload(homework1)

Import Modules and Files

Tip: importlib is useful 
for reloading code 

from a file.



CIS 550   |   Property of Penn Engineering   |   64

Even better: write tests.



CIS 550   |   Property of Penn Engineering   |   65

o pip is the The Python Package Installer
o It allows you to install a huge range of external libraries (and pirated movies) that 

have been packaged up and that are listed in the Python Package Index
o You run it from the command line:

▪ pip install package_name

o In Google Colab/Jupyter Notebooks, you can run command line arguments in the 
Python notebook by prefacing the commands with !:
▪ !pip install nltk

Import and pip

https://www.bleepingcomputer.com/news/security/spammers-flood-pypi-with-pirated-movie-links-and-bogus-packages/


CIS 550   |   Property of Penn Engineering   |   66

o Import
o Functions

▪ Args, kwargs
o Classes

▪ “magic” methods (objects behave like built-in types)
o Profiling

▪ timeit
▪ cProfile

Plan for next time

CIS 521 | 51



CIS 550   |   Property of Penn Engineering   |   67

oFunctions

CIS 521  |  28



CIS 550   |   Property of Penn Engineering   |   68CIS 521  |  29

Function definition begins with def.

Defining Functions
Function name and its arguments.

def get_final_answer(filename):
"""Documentation String"""
line1
line2
return total_counter

...

First line with less 
indentation is considered to be
outside of the function definition.

‘return’ indicates the 
value to be sent back to the caller.

No declaration of types of arguments or result.



CIS 550   |   Property of Penn Engineering   |   69CIS 521  |  30

o Python doesn’t allow function overloading like Java deos
▪ Unlike Java, a Python function is specified by its name alone
▪ Two different functions can’t have the same name, even if they have different 

numbers, order, or names of arguments
▪ But operator overloading – overloading +, ==, -, etc. – is possible using special 

methods on various classes

o There is partial support in Python 3, but I don’t recommend it
▪ Python 3 – Function Overloading with singledispatch

Function overloading? No.

https://www.blog.pythonlibrary.org/2016/02/23/python-3-function-overloading-with-singledispatch/


CIS 550   |   Property of Penn Engineering   |   70CIS 521  |  31

o You can provide default values for a function’s arguments 
o These arguments are optional when the function is called
>>> def myfun(b, c=3, d="hello"):

return b + c

>>> myfun(5,3,"bob")

8

>>> myfun(5,3)

8

>>> myfun(5)

8

o Non-default argument should always precede default arguments; otherwise, it reports 
SyntaxError

Default Values for Arguments Can Approximate 
Overloading

This resembles 
function overloading.



CIS 550   |   Property of Penn Engineering   |   71CIS 521  |  32

o Functions can be called with arguments out of order 
o These arguments are specified in the call
o Keyword arguments can be used after all other arguments. 

>>> def myfun(a, b, c):

return a – b

>>> myfun(2, 1, 43) # 1

>>> myfun(c=43, b=1, a=2) # 1

>>> myfun(2, c=43, b=1) # 1

>>> myfun(a=2, b=3, 5)

File "<stdin>", line 1

SyntaxError: positional argument follows keyword argument

Keyword Arguments



CIS 550   |   Property of Penn Engineering   |   72CIS 521  |  33

o Suppose you want to accept a variable number of non-keyword arguments to your 
function.

def print_everything(*args): 

"""args is a tuple of arguments passed to the fn"""

for count, thing in enumerate(args):

print('{0}. {1}'.format(count, thing))

>>> lst = ['a', 'b', 'c']

>>> print_everything('a', ’b', 'c') 

0. a 

1. b 

2. c

>>> print_everything(*lst) # Same results as above

*args



CIS 550   |   Property of Penn Engineering   |   73CIS 521  |  34

o Suppose you want to accept a variable number of keyword arguments to your 
function.

def print_keyword_args(**kwargs): 

# kwargs is a dict of the keyword args passed to the fn

for key, value in kwargs.items(): #.items() is list

print("%s = %s" % (key, value))

>>> kwargs = {'first_name': 'Bobby', 'last_name': 'Smith'} 

>>> print_keyword_args(**kwargs) 

first_name = Bobby 

last_name = Smith

>>> print_keyword_args(first_name="John", last_name="Doe")

first_name = John 

last_name = Doe

**kwargs



CIS 550   |   Property of Penn Engineering   |   74

o …but I wouldn’t recommend staring into that void.

Function definitions go even deeper…

https://docs.python.org/3/tutorial/controlflow.html#more-on-defining-functions


CIS 550   |   Property of Penn Engineering   |   75CIS 521  |  35

o Function sees the most current value of variables

>>> i = 10 

>>> def add(x):

return x + i

>>> add(5) 

15

>>> i = 20 

>>> add(5) 

25

Python uses dynamic scope



CIS 550   |   Property of Penn Engineering   |   76CIS 521  |  36

o Default parameter values are evaluated only when the def statement they belong to is 
first executed.

o The function uses the same default object each call

def fib(n, fibs={}): 

if n in fibs: 

print('n = %d exists' % n)

return fibs[n] 

if n <= 1: 

fibs[n] = n # Changes fibs!! 

else: 

fibs[n] = fib(n-1) + fib(n-2) 

return fibs[n]

Default Arguments & Memoization

>>> fib(3)
n = 1 exists
2



CIS 550   |   Property of Penn Engineering   |   77CIS 521  |  37

o First class object
▪ An entity that can be dynamically created, destroyed, passed to a function, 

returned as a value, and have all the rights as other variables in the 
programming language have

o Functions are “first-class citizens”
▪ Pass functions as arguments to other functions
▪ Return functions as the values from other functions
▪ Assign functions to variables or store them in data structures

o Higher order functions: take functions as input

def compose (f, g, x): 
return f(g(x))

Functions are “first-class” objects

>>> compose(str, sum, [1, 2, 3])
'6'



CIS 550   |   Property of Penn Engineering   |   78CIS 521  |  38

>>> [int(i) for i in ['1', '2']] 

[1, 2]

>>> list(map(int, ['1', '2'])) #equivalent to above

def is_even(x):

return x % 2 == 0

>>> [i for i in [1, 2, 3, 4, 5] if is_even(i)] 

[2, 4] 

>>> list(filter(is_even, [1, 2, 3, 4, 5])) #equivalent

>>> lambda x: x%2==0

>>> list(filter(lambda x: x%2==0, [1, 2, 3, 4, 5])) #also equivalent

Higher Order Functions: Map, Filter



CIS 550   |   Property of Penn Engineering   |   79

o The functools module exposes a few more useful higher order functions:
▪ reduce(function, iterable, initializer) applies a function to successive values from 

the iterable
• reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
• Equivalent to ((((1+2)+3)+4)+5), or 15

▪ cache(function) does the same thing as the memoization example from a few 
slides back

o You can often just use comprehensions instead of these HOFs.

Higher Order Functions: A few notes

@cache

def factorial(n):
return n * factorial(n-1) if n else 1

Why? When would you 
use the HOFs instead?



CIS 550   |   Property of Penn Engineering   |   80

oClasses and 
Inheritance

CIS 521  |  40



CIS 550   |   Property of Penn Engineering   |   81CIS 521  |  41

class Student:
univ = "upenn" # class attribute

def  _ _ init_ _ (self, name, dept):
self.student_name = name
self.student_dept = dept

def print_details(self):
print("Name: " + self.student_name)
print("Dept: " + self.student_dept)

student1 = Student("julie", "cis")
student1.print_details()
Student.print_details(student1)
Student.univ

Creating a class
Called when an object 

is instantiated

Every method begins 
with the variable self

Another member 
method

Creating an instance, 
note no self

Calling methods of an 
object



CIS 550   |   Property of Penn Engineering   |   82CIS 521  |  42

o A class can extend the definition of another class 
▪ Allows use (or extension) of methods and attributes already defined in the 

previous one.
▪ New class: subclass. Original: parent, ancestor or superclass

o To define a subclass, put the name of the superclass in parentheses after the 
subclass’s name on the first line of the definition.

class AiStudent(Student):

o Python has no ‘extends’ keyword like Java.
o Multiple inheritance is supported.

Subclasses



CIS 550   |   Property of Penn Engineering   |   83CIS 521  |  43

o Often takes in some inputs and stores those as data attributes of the instance 
objects
▪ Very similar to Java

o When subtyping, the ancestor’s __init__ method is executed in addition to new 
commands
▪ Must be done explicitly 
▪ You’ll often see something like this in the __init__ method of subclasses:

parentClass.__init__(self, x, y) 

where parentClass is the name of the parent’s class
Student.__init__(self, x, y) 

Constructors:  __init__



CIS 550   |   Property of Penn Engineering   |   84CIS 521  |  44

o Very similar to over-riding methods in Java

o To redefine a method of the parent class, include a new definition using the same 
name in the subclass.
▪ The old code in the parent class won’t get executed.

o To execute the method in the parent class in addition to new code for some 
method, explicitly call the parent’s version of the method.

parentClass.methodName(self, a, b, c)

▪ The only time you ever explicitly pass self as an argument is when 
calling a method of an ancestor. 

So use  myOwnSubClass.methodName(a,b,c)

Redefining Methods



CIS 550   |   Property of Penn Engineering   |   85CIS 521  | 45

class A(object): 

def foo(self): 

print('Foo!') 

class B(object): 

def foo(self): 

print('Foo?')

def bar(self): 

print('Bar!') 

class C(A, B): 

def foobar(self): 

super().foo() # Foo!

super().bar() # Bar!

Multiple Inheritance can be tricky

The inheritance is 
resolved using C3 MRO



CIS 550   |   Property of Penn Engineering   |   86

oSpecial Built-In 
Methods and Attributes

CIS 521  |  46



CIS 550   |   Property of Penn Engineering   |   87CIS 521  |  47

o Magic Methods allow user-defined classes to behave like built in types

o Duck typing establishes suitability of an object by determining presence of methods
▪ Does it swim like a duck and quack like a duck? It’s a duck
▪ Not to be confused with ‘rubber duck debugging’  

Magic Methods and Duck Typing



CIS 550   |   Property of Penn Engineering   |   88CIS 521  |  48

o Magic Methods and Duck Typing



CIS 550   |   Property of Penn Engineering   |   89CIS 521  |  49

class Student:

def __init__(self, full_name, age):
self.full_name = full_name

self.age = age

def __str__(self):
return "I'm named " + self.full_name + " – age: " +  

str(self.age)
...

>>> f = Student("Bob Smith", 23)

>>> print(f)

I’m named Bob Smith – age: 23

Example Magic Method



CIS 550   |   Property of Penn Engineering   |   90CIS 521  |  50

o Used to implement operator overloading
▪ Most operators trigger a special method, dependent on class

__init__: The constructor for the class.
__len__ : Define how  len( obj ) works.
__copy__: Define how to copy a class.
__cmp__ : Define how == works for class.
__add__ : Define how + works for class
__neg__ : Define how unary negation works for class

o Other built-in methods allow you to give a class the ability to use [ ] notation like an 
array or ( ) notation like a function call.

o There are so many “Magic” Methods.

Other “Magic” Methods 

https://docs.python.org/3/reference/datamodel.html#special-method-names


CIS 550   |   Property of Penn Engineering   |   91CIS 521  |  51

o Rudimentary
>>> import time 
>>> t0 = time.time() 
>>> code_block
>>> t1 = time.time() 
>>> total = t1-t0

o Timeit (more precise)
>>> import timeit
>>> t = timeit.Timer(”<statement to time>", ”<setup code>") 
>>> t.timeit()

▪ The second argument is usually an import that sets up a virtual environment for 
the statement 

▪ timeit calls the statement 1 million times and returns the total elapsed time, 
number argument specifies number of times to run it.

Profiling, function level

What’s an example of 
something you might 

profile like this?



CIS 550   |   Property of Penn Engineering   |   92CIS 521  |  53

# to_time.py

def get_number():    

for x in range(500000):        

yield x

def exp_fn():    

for x in get_number():        

i = x ^ x ^ x    

return 'some result!'

if __name__ == '__main__':    

exp_fn()

Profiling, script level 1



CIS 550   |   Property of Penn Engineering   |   93CIS 521  |  54

# python interactive interpreter (REPL)

$ python -m cProfile to_time.py         

500004 function calls in 0.203 seconds   

Ordered by: standard name   

ncalls tottime percall cumtime percall filename:lineno(function)        

1    0.000    0.000    0.203    0.203 to_time.py:1(<module>)   

500001 0.071    0.000    0.071    0.000    to_time.py:1(get_number)        
1    0.133    0.133    0.203    0.203 to_time.py:5(exp_fn)        
1    0.000    0.000    0.000    0.000 {method 'disable' of 
'_lsprof.Profiler' objects}

o For details see https://docs.python.org/3.7/library/profile.html

Profiling, script level 2
What’s an example of 
something you might 

profile like this?

https://docs.python.org/3.7/library/profile.html


CIS 550   |   Property of Penn Engineering   |   94CIS 521  |  55

o Many frequently-written tasks should be written Python-style even though you 
could write them Java-style in Python

o Remember beauty and readability!

o There are so many useful built-in functions in Python
o A list of anti-patterns:  http://lignos.org/py_antipatterns/

Idioms

https://docs.python.org/3/library/functions.html
http://lignos.org/py_antipatterns/


CIS 550   |   Property of Penn Engineering   |   95CIS 521  |  56

o >>> d = DiGraph([(1,2),(1,3),(2,4),(4,3),(4,1)])

o >>> print(d)

o 1 -> 2

o 1 -> 3

o 2 -> 4

o 4 -> 3

o 4 -> 1

A directed graph class



CIS 550   |   Property of Penn Engineering   |   96CIS 521  |  57

o >>> d = DiGraph([(1,2),(1,3),(2,4),(4,3),(4,1)])

o >>> [v for v in d.search(1, set())]

o [1, 2, 4, 3]

o >>> [v for v in d.search(4, set())]

o [4, 3, 1, 2]

o >>> [v for v in d.search(2, set())]

o [2, 4, 3, 1]

o >>> [v for v in d.search(3, set())]

o [3]

search method returns a generator for the nodes that can be reached from a given 
node by following arrows “from tail to head”

A directed graph class



CIS 550   |   Property of Penn Engineering   |   97CIS 521  |  58

class DiGraph:
def __init__(self, edges):

self.adj = {}
for u, v in edges:
if u not in self.adj: self.adj[u] = [v]
else: self.adj[u].append(v)  

def __str__(self):
return '\n'.join([f’{u} -> {v}'

for u in self.adj for v in self.adj[u]])
>>> d = DiGraph([(1,2),(1,3),(2,4),(4,3),(4,1)])
>>> d.adj
{1: [2, 3], 2: [4], 4: [3, 1]}
The constructor builds a dictionary (self.adj) mapping each node name to a list of 
node names that can be reached by following one edge (an “adjacency list”)

The DiGraph constructor
Define a class

Iterate over a list

Define a magic method

List Comprehension



CIS 550   |   Property of Penn Engineering   |   98CIS 521  |  59

class DiGraph:
...
def search(self, u, visited):

# If we haven't already visited this node...
if u not in visited:  

# yield it
yield u             
# and remember we've visited it now.
visited.add(u)      
# Then, if there are any adjacent nodes...
if u in self.adj:   
# for each adjacent node...
for v in self.adj[u]:   
# search for all nodes reachable from *it*...
for w in self.search(v, visited):  

# and yield each one.
yield w

The search method

Use a generator

Memoize with 
function variable


	Slide Number 1
	Welcome to the  Course!
	Welcome to CIS 421/521
	Course staff
	Gather Town
	Welcome to CIS 421/521
	Course Textbook
	Grading and Homework
	Collaboration Policy
	CIS 421/521 compared to other Penn courses
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98

